华东师范大学学报(自然科学版) ›› 2010, Vol. 2010 ›› Issue (1): 99-102.

• 应用数学与基础数学 • 上一篇    下一篇

C*-代数交换的一些等价条件

蒋闰良, 薛以锋   

  1. 华东师范大学数学系,上海200241
  • 收稿日期:2009-04-03 修回日期:2009-05-22 出版日期:2010-01-25 发布日期:2010-01-25
  • 通讯作者: 薛以锋

Some equivalent conditions of commutativity of a textbfC^*-algebra (Chinese)

JIANG Run-liang,XUE Yi-feng   

  1. Department of Mathematics, East China Normal University, Shanghai 200241, China
  • Received:2009-04-03 Revised:2009-05-22 Online:2010-01-25 Published:2010-01-25
  • Contact: XUE Yi-feng

摘要: 对于交换的 mathrm C^*-代数,它的每一个遗传子代数(或单侧闭理想)都是它的双侧闭理想. 反之, 利用 mathrm C^*-代数 A 上的纯态与 A 中极大左理想的对应关系, 得到了: 若A 中的每一个遗传子代数(或单侧闭理想)都是它的双侧闭理想, 则 A 一定是交换的. 因此在非交换的 mathrm C^*-代数中必有一个 非闭理想的遗传子代数. 利用文中的主要结论, 还得到了判断 mathrm C^*-代数 A 是交换一个简单条件, 即 A 是交换的当且仅当对 A 中的任何两个正元 a, b 存在 a’in A 使得 ab=ba’.

关键词: 遗传mathrm C^*-子代数, 左闭理想, 理想, 纯态, 遗传mathrm C^*-子代数, 左闭理想, 理想, 纯态

Abstract: Let Abe a mathrm C^*-algebra. If A is Abelian, then each hereditary mathrm C^*-subalgebra (or one-sided closed ideal) of A is a closed ideal
in A. Conversely, in terms of the correspondence between the pure state and the maximal left idea, we get that if each hereditary mathrm C^*-subalgebra (or one-sided closed ideal) of A is a closed ideal in A, then A must be Abelian. So in a noncommutative mathrm C^*-algebra, there must exist a hereditarymathrm C^*-subalgebra which is not a closed ideal. Using the main result, we also obtain a simple criterion to check if a given mathrm C^*-algebra A is Abelian, that is, A is Abelian if and only for any two positive elements a, bin A, there is a’in A such that ab=ba’.

Key words: left closed ideal, closed ideal, pure state, hereditary mathrm C^*-subalgebra, left closed ideal, closed ideal, pure state

中图分类号: