[1] WANG H, SHIMIZU E, TANG Y P. Inducible protein knockout reveals temporal requirement of CaMKII reactivation for memory consolidation in the brain [J]. PNAS, 2003, 100(7): 4287-4292.[2] AUGUSTINE J R. Circuitry and functional aspects of the insular lobe in primates including humans [J]. Brain Research Reviews, 1996, 22: 229-244.[3] SHELLEY B P, TRIMBLE M R. The insular lobe of Reil-its anatamico-functional, behavioural and neuropsychiatric attributes in humans-a review [J]. World J Biol Psychiatry, 2004, 5(4): 176-200.[4] DUFFAU H, TAILLANDIER L, GATIGNOL P. The insular lobe and brain plasticity: Lessons from tumor surgery [J]. Clinical Neurology and Neurosurgery, 2006, 108: 543-548.[5] BURES J,FEDERICO B R, YAMAMOTO T. Conditioned Taste Aversion: Memory of a Special Kind [M]. Oxford: Oxford University Press, 1998: 1-13.[6] FEDERICO B R, LETICIA R L, RANIER G. Molecular signals into the insular cortex and amygdala during aversive gustatory memory formation [J]. Cell Mol Neurobiol, 2004, 24(1): 25-36.[7] BRAUN J J, SLICK T B, LORDEN J F. Involvement of gustatory neocortex in the learning of taste aversions [J]. Physiol Behav, 1972, 9(4): 637-641.[8] ROMAN C, REILLY S. Effects of insular cortex lesions on conditioned taste aversion and latent inhibition in the rat [J]. European Journal of Neuroscience, 2007, 26: 2627-2632.[9] ESCOBAR M L,BERMUDEZ-RATTONI F. Long-term potentiation in the insular cortex enhances conditioned taste aversion retention [J]. Brain Res, 2000, 852(1): 208-212.[10] ESCOBAR M L,CHAO V, BERMUDEZ-RATTONI F. In vivo long-term potentiation in the insular cortex: NMDA receptor dependence [J]. Brain Research, 1998, 779: 314-319.[11] RODRIGUES S M, FARB C R, BAUER E P, et al. Pavlovian fear conditioning regulates Thr286 autophosphorylation of Ca2+/calmodulin-dependent protein kinase Ⅱ at lateral amygdala synapses [J]. J Neurosci, 2004, 24(13): 3281-3288.[12] BENNETT M K, ERONDU N E, KENNEDY M B. Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain [J]. Biol Chem, 1983, 258: 12735-12744.[13] MALINOW R, SCHULMAN H, TSIEN R W. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP [J]. Science, 1989, 245: 862-866.[14] SILVA A J, STEVENS C F, TONEGAWA S, et al. Deficient hippocampal long-term potentiation in a-calcium-calmodulin kinase Ⅱ mutant mice [J]. Science, 1992, 257: 201-206.[15] SILVA A J, PAYLOR R, WEHNER J M, et al. Impaired spatial learning in alpha-calcium-calmodulin kinase Ⅱ mutant mice [J]. Science, 1992: 257, 206-211.[16] HANSON P I, SCHULMAN H. Inhibitory autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase analyzed by site-directed mutagenesis [J]. Annu Rev Biochem, 1992, 61: 559-601.[17] BACH M E, HAWKINS R D, OSMAN M, et al. Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency [J]. Cell, 1995, 81: 905-915.[18] MAYFORD M, BACH M E, HUANG Y Y, et al. Control of memory formation through regulated expression of a CaMKII transgene [J]. Science, 1996, 274: 1678-1683.[19] MALENKA R C, NICOLL R A. Long-term potentiation-a decade of progress [J] . Science, 1999, 285: 1870-1874.[20] FRANKLAND P W, O’BRIEN C, OHNO M, et al. Alpha-CaMKII-dependent plasticity in the cortex is required for permanent memory [J]. Nature, 2001, 411: 309-313.[21] LISMAN J, SCHULMAN H, CLINE H. The molecular basis of CaMKII function in synaptic and behavioural memory [J]. Nat Rev Neurosci, 2002, 3(3): 175-190.[22] IRVINE E E, VON HERTZEN L S, PLATTNER F, et al. Alpha-CaMKII autophosphorylation: a fast track to memory [J]. Trends Neurosci, 2006, 29(8): 459-465.[23] IRVINE E E, VERNON J, GIESE K P. Alpha-CaMKII autophosphorylation contributes to rapid learning but is not necessary for memory [J]. Nat Neurosci, 2005(8): 411-412.[24] CAO X, WANG H, MEI B. Inducible and selective erasure of memories in the mouse brain via chemical-genetic manipulation [J]. Neuron, 2008, 60(2): 353-366.[25] BELELOVSKY K, ELKOBI A, KAPHZAN H, et al. A molecular switch for translational control in taste memory consolidation [J]. European Journal of Neuroscience, 2005, 22: 2560-2568[26] LI Y X, ZHANG Y, LESTER H A, et al. Enhancement of neurotransmitter release induced by brain-derived neurotrophic factor in cultured hippocampal neurons [J]. J Neuroscience, 1998, 18: 10231-10240.[27] LIU Z W, YANG S, ZHANG Y X, et al. Presynaptic alpha-7 nicotinic acetylcholine receptors modulate excitatory synaptic transmission in hippocampal neurous [J]. Acta Physiol Sin, 2003, 55: 731-735.[28] DEBANNE D, GUERINEAU N C, GAHWILER B H, et al. Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release [J]. J Physiol, 1996, 491: 163-176.[29] MERRILL M A, CHEN Y, STRACK S, et al. Activity-driven postsynaptic translocation of CaMKII [J]. Trends Pharmacol Sci, 2005, 26(12): 645-653.[30] TAN S E, WENTHOLD R J, SODERLING T R. Phosphorylation of AMPA-type glutamate receptors by calcium/calmodulin-dependent protein kinase Ⅱ and protein kinase C in cultured hippocampal neurons [J]. J Neurosci, 1994, 14(3 Pt 1): 1123-1129. [31] BARRIA A, DERKACH V, SODERLING T. Identification of the Ca2+/calmodulin-dependent protein kinase Ⅱ regulatory phosphorylation site in the α-amino-3-hydroxyl-5-methyl4- isoxazole-propionate-type glutamate receptor [J]. J Biol Chem, 1997, 272: 32727-32730.[32] THIAGARAJAN T C, PIEDRAS-RENTERIA E S, TSIEN R W. α- and βCaMKII: inverse regulation by neuronal activity and opposing effects on synaptic strength [J]. Neuron, 2002, 36: 1103-1114.[33] SONG I, HUGANIR R L. Regulation of AMPA receptors during synaptic plasticity [J]. Trends Neurosci, 2002, 25: 578-588.[34] LOWETH J A, SINGER B F, BAKER L K, et al. Transient Overexpression of α-Ca2+/Calmodulin-Dependent Protein Kinase Ⅱ in the Nucleus Accumbens Shell Enhances Behavioral Responding to Amphetamine [J]. J Neurosci, 2010, 30(3): 939-949.[35] COLONNESE M T, SHI J, CONSTANTINE-PATON M. Chronic NMDA receptor blockade from birth delays the maturation of NMDA currents, but does not affect AMPA/kainate currents [J]. J Neurophysiol, 2003, 89(1): 57-68.[36] COLBRAN R J, BROWN A M. Calcium/calmodulin-dependent protein kinase II and synaptic plasticity [J]. Neurobiology, 2004, 14: 318-327.[37] OMKUMAR R V,KIELY M J, ROSENSTEIN A J, et al. Identification of a phosphorylation site for calcium/calmodulin-dependent protein kinase Ⅱ in the NR2B subunit of the N-methyl-D-aspartate receptor [J]. J Biol Chem, 1996, 271: 31670-31678.[38] LISMAN J, SCHULMAN H, CLINE H. The molecular basis of CaMKII function in synaptic and behavioural memory [J]. Nat Rev Neurosci, 2002, 3(3): 175-190.[39] BARRIA A, MALINOW R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII [J]. Neuron, 2005, 48: 289-301.[40] PARK C S, ELGERSMA Y, GRANT S G, et al. αCaMKII and PSD-95 differentially regulate synaptic expression of NR2A and NR2B-containing NMDA receptors in hippocampus [J]. Neuroscience, 2008, 151(1): 43-55. |