[1] MINOTTI G, MENNA P, SALVATORELLI E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity[J]. Pharmacological Reviews, 2004,56: 185-229. [2] DAVE B, CHANG J. Treatment resistance in stem cells and breast cancer[J]. Journal of Mammary Gland Biology and Neoplasia, 2009,14: 79-82. [3] BORST P, ELFERINK R O. Mammalian ABC transporters in health and disease[J]. Annual Review of Biochemistry, 2002,71: 537-592. [4] BROXTERMAN H J, GOTINK K J, VERHEUL H M. Understanding the causes of multidrug resistance in cancer: A comparison of doxorubicin and sunitinib[J]. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 2009(12): 114-126. [5] AMBUDKAR S V, KIMCHI-SARFATY C, SAUNA Z E, et al. P-glycoprotein: From genomics to mechanism. Oncogene[J]. 2003,22: 7468-7485. [6] GOTTESMAN M M, FOJO T, BATES S E. Multidrug resistance in cancer: Role of ATP-dependent transporters[J]. Nature Reviews. Cancer, 2002(2): 48-58. [7] MISRA R, ACHARYA S, SAHOO S K. Cancer nanotechnology: Application of nanotechnology in cancer therapy[J]. Drug Discovery Today, 2010,15: 842-850. [8] SHAPIRA A, LIVNEY Y D, BROXTERMAN H J, et al. Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance[J]. Drug Resistance Updates : Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 2011,14: 150-163. [9] DUNCAN R. Polymer conjugates as anticancer nanomedicines[J]. Nature Reviews Cancer. 2006(6): 688-701. [10] CHITHRANI B D, GHAZANI A A, CHAN W C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells[J]. Nano Letters, 2006(6): 662-668. [11] CHITHRANI B D, CHAN W C. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes[J]. Nano Letters, 2007(7): 1542-1550. [12] WONG H L, BENDAYAN R, RAUTH A M, et al. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system[J]. The Journal of Pharmacology and Experimental Therapeutics, 2006,317: 1372-1381. [13] BONOMI P. Paclitaxel poliglumex (PPX, CT-2103): macromolecular medicine for advanced non-small-cell lung cancer[J]. Expert Review of Anticancer Therapy, 2007(7): 415-422. [14] DUNCAN R, VICENT M J. Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities[J]. Advanced Drug Delivery Reviews, 2010,62: 272-282. [15] ETRYCH T, SIROVA M, STAROVOYTOVA L, et al. HPMA copolymer conjugates of paclitaxel and docetaxel with pH-controlled drug release[J]. Molecular Pharmaceutics, 2010(7): 1015-1026. [16] MILLER K, ELDAR-BOOCK A, POLYAK D, et al. Antiangiogenic antitumor activity of HPMA copolymer-paclitaxel-alendronate conjugate on breast cancer bone metastasis mouse model[J]. Molecular Pharmaceutics, 2011(8): 1052-1062. [17] VAN S, DAS S K, WANG X, et al. Synthesis, characterization, and biological evaluation of poly(L-gamma-glutamyl-glutamine)- paclitaxel nanoconjugate[J]. International Journal of Nanomedicine, 2010(5): 825-837. [18] WANG X, ZHAO G, VAN S, et al. Pharmacokinetics and tissue distribution of PGG-paclitaxel, a novel macromolecular formulation of paclitaxel, in nu/nu mice bearing NCI-460 lung cancer xenografts[J]. Cancer Chemotherapy and Pharmacology, 2010,65: 515-526. [19] YANG D, VAN S, JIANG X, et al. Novel free paclitaxel-loaded poly(L-gamma-glutamylglutamine)-paclitaxel nanoparticles[J]. International Journal of Nanomedicine, 2011(6): 85-91. [20] YANG D, VAN S, SHU Y, et al. Synthesis, characterization, and in vivo efficacy evaluation of PGG-docetaxel conjugate for potential cancer chemotherapy[J]. International Journal of Nanomedicine, 2012(7): 581-589. [21] PAJIC M, IYER J K, KERSBERGEN A, et al. Moderate increase in Mdr1a/1b expression causes in vivo resistance to doxorubicin in a mouse model for hereditary breast cancer[J]. Cancer Research, 2009,69: 6396-6404. [22] DUNCAN R. Polymer therapeutics as nanomedicines: New perspectives [J]. Current Opinion in Biotechnology, 2011,22: 492-501. [23] WAN C P, LETCHFORD K, JACKSON J K, et al. The combined use of paclitaxel-loaded nanoparticles with a low-molecular-weight copolymer inhibitor of P-glycoprotein to overcome drug resistance[J]. Int J Nanomedicine, 2013(8): 379-391. [24] CASCORBI I. P-glycoprotein: tissue distribution, substrates, and functional consequences of genetic variations[J]. Handb Exp Pharmacol, 2011,201: 261-283. |