1] BAILLIC R. Long memory process and fractional integration in econometrics [J]. Journal of Econometrics, 1996, 1: 5-59. [2] BERAN J. Statistical methods for data with long range dependences [J]. Statistics Science, 1992, 7: 404-427.[3] BROCKWELL P, Davis R. Time Series: Theory and Methods [M]. Springer-Verlag, 1991[4] CHERIDITO P. Arbitrage in fractional Brownian motion models, Finance and Stochastics, 2003, 7 (4): 533-553.[5] DUNCAN T E, HU Y Z, PASIC-DUNCAN B. Stochastic calculus for fractional Brownain motion I: Theorey. SIAM: Journal of Control and Optimizaiton, 2000(38): 582-612.[6] PETERS E. Fractal Market Analysis [M], New York: John &Wiley, 1994.[7] GRANGER C, DING Z. Varieties of long memory models [J]. Journal of Econometrics, 1996, 73(1): 61-77.[8] HURST H E. Long term storage capacity of reservoirs. Transaction of the American Society of Civil Engineers, 1951, 116: 770-799[9] LU Z, GUEGAN D. Testing unit roots and long range dependence of foreign exchange [J]. Journal of Time Series Analysis, 2010, 7: 1-8.[10] LO A W. Long-term memory in stock market prices [J]. Econometrica, 1991(59): 1279–1313.[11] LO A W, MacKinlay C. Stock market prices do not follow random walks: Evidence from a simple specification test [J]. Review of Financial Study, 1988(1): 41–66.[12] MANDELBROT B B, NESS J W V. Fractional Brownian Motions, Fractional Noises and Applications [J]. SIAM Review, 1968(10): 422-437.[13] ROBINSON, P. Efficient tests for no-stationary hypothesis [J]. Journal of the American Statistical Association, 1994, 89: 1420-1437.[14] WILLINGER W, TAQQU M, TEVEROVSKY V. Stock market prices and long-range dependence [J]. Finance and Stochastics, 1999: 1-13.[15] SOTTINEN T, VALKEILA E. On arbitrage and replication in the fractional Black–Scholes pricing model [J]. Statistics & Decisions, 2003. 21: 137–151.[16]赵巍,何建敏. 分数布朗运动驱动的期权定价模型及其风险特征 [J]. 数理统计与管理, 2011, 30(6): 1002-1008 |