[ 1 ] OLLIVIER H, ZUREK W H. A measure of the quantumness of correlation [J]. Phys Rev Lett, 2001, 88: 017901.
[ 2 ] VEDRAL V. Classical correlations and entanglement in quantum measurements [J]. Phys Rev Lett, 2003, 90: 050401.
[ 3 ] DAKIC B, VEDRAL V, BRUKNER C. Necessary and sufficient condition for nonzero quantum discord [J]. Phys Rev Lett, 2010, 105: 190502.
[ 4 ] YE B L, LIU Y M, LIU X S, et al. Quantum correlations in a family of bipartite qubit-qutrit separable states [J]. Chin Phys Lett, 2013, 30: 020302.
[ 5 ] DATTA A, GHARIBIAN S. Measurement-induced disturbances and nonclassical correlations of Gaussian states [J]. Phys Rev A, 2009, 79: 042325.
[ 6 ] ZUREK W H. Quantum discord and Maxwell’s demons [J]. Phys Rev A, 2003, 67: 012320.
[ 7 ] TANG H J, LIU Y M, CHEN J L, et al. Analytic expressions of discord and geometric discord in Werner derivatives [J]. Quant Inf Proc, 2014, 13(6): 1331-1344.
[ 8 ] ALI M, RAU A R P, ALBER G. Quantum discord for two-qubit X states [J]. Phys Rev A, 2010, 81: 042105.
[ 9 ] LU X M, MA J, XI Z, et al. Optimal measurements to access classical correlations of two-qubit states [J]. Phys Rev A, 2011, 83: 012327.
[ 10 ] LUO S. Using measurement-induced disturbance to characterize correlations as classical or quantum [J]. Phys Rev A, 2008, 77:022301.
[ 11 ] XU S, SONG X K, YE L. Measurement-induced disturbance and negativity in mixed-spin XXZ model [J]. Quant Inf Proc, 2014, 13(4): 1–12.
[ 12 ] ESPOUKE P, PEDRAM P. Quantum correlation evolution of GHZ and W states under noisy channels using ameliorated measurement-induced disturbance [J]. Quant Inf Proc, 2015, 14(1): 303-319.
[ 13 ] RAO B R, SRIKANTH R. Quantumness of noisy quantum walks: A comparison between measurement-induced [J]. Phys Rev A, 2008, 83: 064302.
[ 14 ] CHAI C L. Two-mode nonclassical state via superposition of two-mode coherent states [J]. Phys Rev A, 1992, 46: 7187.
[ 15 ] WANG X, SANDERS B C. Multipartite entangled coherent states [J]. Phys Rev A, 2001, 62: 012303. [ 16 ] LUND A P, RALPH T C, HASELGROVE H L. Fault-tolerant linear optical quantum computing with small amplitude coherent states [J]. Phys Rev Lett, 2008, 100: 030503.
[ 17 ] WANG X. Quantum teleportation of entangled coherent states [J]. Phys Rev A, 2001, 64: 022302.
[ 18 ] JEONG H, KIM M S. Efficient quantum computation using coherent states [J]. Phys Rev A, 2002, 65: 042305. [ 19 ] GE R C, GONG M, LI C F, et al. Quantum correlation and classical correlation dynamics in the spin-boson model [J]. Phys Rev A, 2010, 81: 064103.
[ 20 ] PAZ J P, RONCAGLIA A J. Redundancy of classical and quantum correlations during decoherence [J]. Phys Rev A, 2009, 80: 042111.
[ 21 ] XIE C M, LIU Y M, LI G F, et al. A note on quantum correlations in Werner states under two collective noises [J]. Quant Inf Proc, 2014, 13(12): 2713-2718.
[ 22 ] SONG X T, LI H W, ZHANG C M, et al. Analysis of faraday-michelson quantum key distribution system with unbalanced attenuation [J]. Chin Opt Lett, 2015, 13: 012701.
[ 23 ] MODI K, PATEREK T, SON W, et al. Unified view of quantum and classical correlations [J]. Phys Rev Lett, 2010, 104: 080501.
[ 24 ] PARK K, JEONG H. Entangled coherent states versus entangled photon pairs for practical quantum information processing [J]. Phys Rev A, 2010, 82: 062325.
[ 25 ] YAO Y, LI H W, YIN Z Q, et al. The effect of channel decoherence on entangled coherent states: A theoretical analysis [J]. Phys Lett A, 2011, 375: 3762-3769. |