[1] KELLY A E, GOULDEN M L. Rapid shifts in plant distribution with recent climate change [C]//Proceedings of the National Academy of Sciences of the United States of America. USA: HighWire Press, 2008, 105(33): 11823-11826.
[2] DULLINGER S, GATTRINGER A, THUILLER W, et al. Extinction debt of high-mountain plants under twenty-first-century climate change [J]. Nature Climate Change, 2012, 2(8): 619-622.
[3] THUILLER W, LAVOREL S, ARAUJO M B, et al. Climate change threats to plant diversity in Europe [C]//Proceedings of the National Academy of Sciences of the United States of America. USA: HighWire Press, 2005, 102(23): 8245-8250.
[4] BELLARD C, BERTELSMEIER C, LEADLEY P, et al. Impacts of climate change on the future of biodiversity [J]. Ecology Letters, 2012,15(4): 365-377.
[5] MALCOLM J R, LIU C, NEILSON R P, et al. Global warming and extinction from biodiversity hotspots [J]. Conservation Biology, 2006, 20(2): 438-548.
[6] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions [J]. Ecological Modelling, 2006, 190(3): 231-259.
[7] KHANUM R, MUMTAZ A S, KUMAR S. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling [J]. Acta Oecologica, 2013, 49: 23-31.
[8] LATINNE A, MEYNARD C N, HERBRETEAU V, et al. Influence of past and future climate changes on the distribution of three Southeast Asian murine rodents [J]. Journal of Biogeography, 2015, 42(9): 1714-1726.
[9] YUAN H S, WEI Y L, WANG X G. Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China [J]. Fungal Ecology, 2015, 17: 140-145.
[10] DESAMOREA, LAENEN B, STECH M, et al. How do temperate bryophytes face the challenge of a changing environment? Lessons from the past and predictions for the future [J]. Global Change Biology, 2012, 18(9): 2915-2924.
[11] KRUIJER J D, NIELS R, MICHAEL S. Modelling the distribution of the moss species \textit{Hypopterygium tamarisci ](Hypopterygiaceae, Bryophyta) in central and south America [J]. Nova Hedwigia, 2010, 91(3/4): 399-420.
[12] 麻亚鸿, 李丹丹, 于晶, 等.中国蓑藓属与木灵藓属分布式样与气候因子的关系[J]. 生物多样性, 2013, 21(2): 177-184.
[13] SERGIO C, GARCIA C A, VIEIRA C, et al. Conservation of Portuguese red-listed bryophytes species in Portugal: Promoting a shift in perspective on climate changes [J]. Plant Biosystems, 2014, 148(4): 837-850.
[14] SERGIO C, FIGUEIRA R, DRAPER D. et al. Modelling bryophyte distribution based on ecological information for extent of occurrence assessment [J]. Biological Conservation, 2007, 135(3): 341-351.
[15] SERGIO C, FIGUEIRA R, MENEZES R. Modeling the distribution of Sematophyllum substrumulosum (Hampe) E. Britton as a signal of climatic changes in Europe [M]//TUBA Z, SLACK N G, STARK L R. Bryophyte Ecology and Climate Change. Cambridge: Cambridge University Press, 2011: 427-439.
[16] YU J, MA Y H, GUO S L. Modeling the geographic distribution of the epiphytic moss Macromitrium japonicum in China [J]. Annales Botanici Fennici, 2013, 50: 35-42.
[17] 于晶, 唐艳雪, 郭水良.基于GIS和MaxEnt比较中国砂藓属与紫萼藓属植物地理分布[J].植物科学学报, 2012, 30(5): 443-458.
[18] GIGNAC L D. Bryophytes as indicators of climate change [J].Bryologist, 2001, 104(3): 410-420.
[19] TUBA Z, SLACK N G, STARK L R. Bryophyte Ecology and Climate Change[M]. Cambridge: Cambridge University Press, 2011.
[20] WU P C, CROSBY M R, HE S. Moss Flora of China [M]. English version, Vol 5. Beijing: Science Press & St. Louis: Missouri Botanical Garden Press, 2011.
[21] 陈家伟, 俞英, 陈子林, 等. 浙江大盘山国家级自然保护区藓类植物区系研究[J]. 南京林业大学学报(自然科学版), 2009, 33(1):74-78.
[22] 邓佳佳, 熊源新, 刘伟才, 等. 贵州省岩下大鲵自然保护区苔藓植物区系调查[J]. 山地农业生物学报, 2008, 27(2): 123-126.
[23] 何林. 渝东南地区苔藓植物物种多样性研究[D]. 贵阳: 贵州大学,2005: 52.
[24] 何祖霞, 严岳鸿, 马其侠, 等. 湖南丹霞地貌区的苔藓植物多样性[J].生物多样性, 2012, 20(4): 522-526.
[25] HE Z X, ZHANG L, XIE G Z, et al. A preliminary list of mosses from Shimentai nature reserve, Guangdong [J]. Journal of Tropical and Subtropical Botany, 2004, 12(6): 541-551.
[26] 贾鹏, 熊源新, 王美会, 等. 广西猫街鸟类自然保护区苔藓植物初步研究[J]. 贵州大学学报(自然科学版), 2010, 27(6): 55-62.
[27] 李祖凰. 四川省贡嘎山藓类植物区系地理与群落研究[D]. 上海:上海师范大学, 2012: 107, 126.
[28] 李祖凰, 于晶, 曹同, 等. 四川王朗自然保护区藓类植物初报[J].贵州师范大学学报(自然科学版), 2010, 28(4): 156-161.
[29] 毛俐慧. 澜沧江峡谷(云龙--德钦段)藓类区系研究[D]. 浙江金华:浙江师范大学, 2010: 52-53.
[30] 裴林英. 蔓藓属(Meteorium)的分类学修订[D]. 上海:华东师范大学, 2010: 35-90.
[31] 彭晓馨. 贵州百里杜鹃林区苔藓植物名录及分布类型~ [J].贵州大学学报(农业与生物科学版), 2002, 21(6): 414-419.
[32] 王美会, 熊源新, 贾鹏, 等. 贵州龙头大山自然保护区苔藓植物研究[J]. 山地农业生物学报, 2010, 29(5): 381-386.
[33] 熊源新, 杨志平. 鄂西南地区苔藓植物区系研究~ [J].山地农业生物学报, 2006, 25(6): 510-518.
[34] 徐力, 熊源新, 王美会, 等.云南富宁县木洪大山苔藓植物区系研究[J]. 山地农业生物学报, 2010, 29(6): 475-481.
[35] 杨冰, 熊源新, 韩敏敏, 等. 贵州省独山都柳江源湿地自然保护区苔藓植物区系研究[J]. 贵州林业科技, 2013, 41(1): 5-11, 21.
[36] 曾国驱, 林邦娟. 粤北石灰岩地区的藓类植物[J].热带亚热带植物学报, 2001, 9(2): 113-122.
[37] PEARSON G R, DAWSON T P, LIU C. Modelling species distributions in Britain: A hierarchical integration of climate and land-cover data [J]. Ecography, 2004, 27(3): 285-298.
[38] FIELDING A H, BELL J F. A review of methods for the assessment of prediction errors in conservation presence/absence models [J].Environmental Conservation, 1997, 24(1): 38-49.
[39] SWETS J A. Measuring the accuracy of diagnostic systems [J].Science, 1988, 240(4587): 1285-1293.
[40] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.
[41] FRAHM J P, KLAUS D. Bryophytes as indicators of recent climate fluctuations in Central Europe [J]. Lindbergia, 2001, 26(2): 97-104.
[42] ENGLER R, RANDIN C F, VITTOZ P, et al. Predicting future distributions of mountain plants under climate change: Does dispersal capacity matter? [J]. Ecography, 2009, 32(1): 34-45. |