[1] ANKIT T, SIDDARTH T, AMIT S, et al. Storm@Twitter[C]//Proceedings of SIGMOD International Conference on Management of Data. ACM, 2014:147-156. [2] LEONARDO N, BRUCE R, ANISH N, et al. S4:Distributed stream computing platform[C]//Proceedings of the International Conference on Data Mining Workshops, 2010:170-177. [3] CHEN G J, WIENER J L, IYER S, et al. Realtime data processing at Facebook[C]//Proceedings of SIGMOD International Conference on Management of Data. ACM, 2016:1087-1098. [4] WILSCHUT A N, APERS P M G. Dataflow query execution in a parallel main-memory environment[J]. Distributed and Parallel Databases, 1993(1):103-123. [5] URHAN T, FRANKLINM J. Dynamic pipeline scheduling for improving interactive query performance[C]//Proceedings of International Conference on Very Large Data Bases. 2001:501-510. [6] IVES Z G, FLORESCU D, FRIEDMAN M, et al. An adaptive query execution system for data integration[C]//Proceedings of SIGMOD International Conference on Management of Data. ACM, 1999:299-310. [7] TAO Y F, YIU M L, PAPADIAS D, et al. RPJ:Producing fast join results on streams through rate-based optimization[C]//Proceedings of SIGMOD International Conference on Management of Data. ACM, 2005:371-382. [8] MOKBEL M F, LU M, AREF W G. Hash-merge join:A non-blocking join algorithm for producing fast and early join results[C]//Proceedings of the 20th International Conference on Data Engineering. 2004:251-262. [9] ANANTHANARAYANAN R, BASKER V, DAS S, et al. Photon:Fault-tolerant and scalable joining of continuous data streams[C]//Proceedings of SIGMOD International Conference on Management of Data. ACM, 2013:577-588. [10] ZAHARIA M, DAS T, LI H Y, et al. Discretized streams:Fault-tolerant streaming computation at scale[C]//Proceedings of the 24th ACM Symposium on Operating Systems Principles. 2013:423-438. [11] QIAN Z P, HE Y, SU C Z, et al. TimeStream:Reliable stream computation in the cloud[C]//Proceedings of the 8th ACM European Conference on Computer Systems. ACM, 2013:1-14. [12] ELSEIDY M, ELGUINDY A, VITOROVIC A, et al. Scalable and adaptive online joins[C]//Proceedings of International Conference on Very Large Data Bases, 2014(7):441-452. [13] LIN Q, OOI B C, WANG Z K, et al. Scalable distributed stream join processing[C]//Proceedings of ACM SIGMOD International Conference on Management of Data. ACM, 2015:811-825. [14] GOODHOPE K, KOSHY J, KREPS J, et al. Building linkedin's real-time activity data pipeline[J]. IEEE Data Eng Bull, 2012, 35(2):33-45. [15] REDIS.[DB/OL].[2017-06-01]. https://redis.io/. [16] ANGULAR JS.[EB/OL].[2017/06-01]. https://angularjs.org/. [17] FANG J H, ZHANG R, WANG X T, et al. Distributed stream join under workload variance[J]. World Wide Web Journal, 2017:1-22. [18] FANG J H, WANG X T, ZHANG R, et al. Flexible and adaptive stream join algorithm[C]//Proceedings of International Conference on Asia-Pacific Web, 2016:3-16. [19] FANG J H, ZHANG R, WANG X T, et al. Cost-effective stream join algorithm on cloud system[C]//Proceedings of CIKM International Conference on Information and Knowledge Management. ACM, 2016:1773-1782. [20] TPC-H BENCHMARK.[EB/OL].[2017-06-01]. http://www.tpc.org/tpch. |