华东师范大学学报(自然科学版) ›› 2017, Vol. 2017 ›› Issue (5): 101-116,137.doi: 10.3969/j.issn.1000-5641.2017.05.010

• 用户行为分析 • 上一篇    下一篇

跨领域推荐技术综述

陈雷慧1, 匡俊1, 陈辉2, 曾炜2, 郑建兵1, 高明1   

  1. 1. 华东师范大学 数据科学与工程学院, 上海 200062;
    2. 深圳腾讯计算机系统有限公司, 北京 100080
  • 收稿日期:2017-06-20 出版日期:2017-09-25 发布日期:2017-09-25
  • 通讯作者: 郑建兵,男,高级工程师,研究方向为信息处理技术.E-mail:zhengjb@js.chinamobile.com E-mail:zhengjb@js.chinamobile.com
  • 作者简介:陈雷慧,女,硕士研究生,研究方向为用户行为分析、点击率预测.E-mail:15720622991@163.com
  • 基金资助:
    国家重点研发计划(2016YFB1000905);国家自然科学基金广东省联合重点项目(U1401256);国家自然科学基金(61402177,61672234,61402180,61502236,61363005,61472321)

Techniques for cross-domain recommendation:A survey

CHEN Lei-hui1, KUANG Jun1, CHEN Hui2, ZENG Wei2, ZHENG Jian-bing1, GAO Ming1   

  1. 1. School of Data Science and Engineering, East China Normal University, Shanghai 200062, China;
    2. Shenzhen Tencent Computer System Co. Ltd., Beijing 100080, China
  • Received:2017-06-20 Online:2017-09-25 Published:2017-09-25

摘要: 随着信息技术和互联网的飞速发展,信息过载的问题日趋严重.个性化推荐系统是解决这一问题的热门技术.推荐系统的核心在于推荐算法,在过去的十年里,基于单领域的协同过滤推荐算法应用最为广泛.但用户和项目数量的急剧增长使得传统的协同过滤推荐算法面临冷启动和数据稀疏问题的挑战.跨领域推荐旨在整合来自不同领域的用户偏好特征,针对每个用户自身特点进行智能化感知,精准满足用户个性化需求,从而提高目标领域推荐结果的准确性和多样性,现已成为推荐系统研究领域中的热门话题.本文首先对跨领域推荐技术进行系统地研究和分析,概述跨领域推荐算法的相关概念、技术难点;其次对现有的跨领域推荐技术进行分类,总结出各自的优点及不足;最后对跨领域推荐算法的性能分析方法进行详尽的介绍.

关键词: 信息过载, 个性化, 跨领域推荐算法

Abstract: With the rapid development of information technology and Internet, the available information on the Internet has overwhelmed the human processing capabilities in some commercial applications. Personalized recommendation system is a popular technology to deal with the information overload and recommendation algorithms are the core of it. In the past decades, collaborative filtering recommendation algorithm based on single domain has been widely used in many applications. However, the problems of cold start and data sparsity usually result in overfitting and fail to give desirable performance. The cross-domain recommendation techniques have been a hot topic in the field of recommender systems, which aim to utilize knowledge from related domains to perform or improve recommendation in the target domain. This paper carries out a systematic study and analysis of cross-domain recommendation techniques. First, we summarize the related concepts and the technical difficulties of cross-domain recommendation algorithms. Second, we present a general categorization of cross-domain recommendation techniques and sum up their respective advantages and disadvantages. Finally we introduce the method of performance analysis of cross-domain recommendation algorithm in detail.

Key words: information overload, personalization, cross-domain recommendation algorithms

中图分类号: