华东师范大学学报(自然科学版) ›› 2018, Vol. 2018 ›› Issue (3): 38-45.doi: 10.3969/j.issn.1000-5641.2018.03.005

• 数学 • 上一篇    下一篇

欧氏空间中超曲面的L2调和2-形式

张全锐, 刘建成   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2017-05-01 出版日期:2018-05-25 发布日期:2018-05-29
  • 作者简介:张全锐,男,硕士研究生,研究方向为微分几何.E-mail:zhangqr90@163.com.
  • 基金资助:
    国家自然科学基金(11261051,11761061)

L2 harmonic 2-forms on a hypersurface in Euclidean space

ZHANG Quan-rui, LIU Jian-cheng   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2017-05-01 Online:2018-05-25 Published:2018-05-29

摘要: 研究欧氏空间Rn+1n≥3)中完备超曲面M上的L2调和2-形式.应用Bochner技巧,证明了当M的无迹对称张量Φ和平均曲率向量HLnM)范数均有只依赖于n的适当上界时,M上的L2调和2-形式是平行的.进一步,若M为非极小超曲面,则M上不存在非平凡的L2调和2-形式.

关键词: 欧氏空间, 超曲面, L2调和2-形式, 非极小

Abstract: In this paper, we study L2 harmonic 2-forms on a complete hypersurface M of Euclidean space Rn+1(n ≥ 3). By applying the Bochner technique, we prove that if the Ln(M) norms of the traceless second fundamental form Φ and the mean curvature vector H are both bounded from above by certain constants which depend only on n, then the L2 harmonic 2-forms on M are parallel. Furthermore, if M is a non-minimal hypersurface, then there is no nontrivial L2 harmonic 2-form on M.

Key words: Euclidean space, hypersurface, L2 harmonic 2-forms, non-minimal

中图分类号: