华东师范大学学报(自然科学版) ›› 2018, Vol. 2018 ›› Issue (3): 46-54,120.doi: 10.3969/j.issn.1000-5641.2018.03.006

• 数学 • 上一篇    下一篇

AM(s)-凸函数及其Jensen型不等式

宋振云1, 胡付高2   

  1. 1. 湖北职业技术学院 教务处, 湖北 孝感 432000;
    2. 湖北工程学院 数学与统计学院, 湖北 孝感 432000
  • 收稿日期:2017-03-17 出版日期:2018-05-25 发布日期:2018-05-29
  • 作者简介:宋振云,男,教授,研究方向为高等数学教学及凸分析.E-mail:hbsy12358@126.com.
  • 基金资助:
    教育部科学技术研究重点项目(212109)

AM(s)-Convex function and its Jensen-type inequality

SONG Zhen-yun1, HU Fu-gao2   

  1. 1. Dean's office, Hubei Polytechnic Institute, Xiaogan Hubei 432000, China;
    2. School of Mathematics and Statistics, Hubei Engineering University, Xiaogan Hubei 432000, China
  • Received:2017-03-17 Online:2018-05-25 Published:2018-05-29

摘要: 针对函数的凸性及其广义凸性,研究凸函数的推广问题.首先引入了n个正数的加权r次幂s-平均的概念和记号,并利用加权r次幂s-平均定义了AMs)-凸函数;然后用符号化的方式讨论了AMs)-凸函数的判定定理和运算性质;最后,证明了AMs)-凸函数的Jensen型不等式,并给出了其等价形式.研究结果表明,AMs)-凸函数是包含众多凸函数的一类广义凸函数,运用加权r次幂s-平均定义和研究AMs)-凸函数是对凸函数进行推广和研究的有效方法,同时也为凸函数的拓展推广和深入研究探索了一条新的途径.

关键词: 加权r次幂s-平均, AM(s)-凸函数, 判定定理, 运算性质, Jensen型不等式

Abstract: Based on the convexity and general convexity of a function, the authors study extending issues of a convex function. Firstly, the concept and sign of weighted r-th power s-mean of n positives are introduced; secondly, the AM(s)-convex function is defined by weighted r-th power s-mean; thirdly, the judgment theorem and operation properties of AM(s)-convex function are discussed; and finally, the Jensen-type inequality of the AM(s)-convex function is proved and an equivalent form is provided. The study shows that the AM(s)-convex function is a subset of general convex functions that includes many convex functions. Studying the AM(s)-convex function with the method of weighted r-th power s-mean is an effective way of extending and studying convex functions. This method explores a new approach to extending and studying convex functions.

Key words: weighted r-th power s-mean, AM(s)-convex function, judgment theorem, operation property, Jensen-type inequality

中图分类号: