[1] POINCARÉ H. Leçons sur la théorie mathématique de la lumière. Théorie mathématique de la lumière. II, Nouvellesétudes sur la diffraction, théorie de la dispersion de Helmholtz:Leçons professées pendant le premier semestre 1891-1892[R].[S.l.]: LAMOTTE M, HURMUZESCU D, 1892. [2] BORN M, WOLF E. Principles of Optics[M]. 6th ed. New York:Pergamon Press, 1980. [3] HOLBOURN A H S. Angular momentum of circularly polarised light[J]. Nature, 1936, 137(3453):31. DOI:10.1038/137031a0. [4] YAO A M, PADGETT M J. Orbital angular momentum:Origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2):161-204. DOI:10.1364/AOP.3.000161. [5] MILIONE G, SZTUL H I, NOLAN D A, et al. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light[J]. Physical Review Letters, 2011, 107(5):053601. DOI:10.1103/PhysRevLett.107.053601. [6] YI X N, LIU Y C, LING X H, et al. Hybrid-order Poincaré sphere[J]. Physical Review A, 2015, 91(2):023801. DOI:10.1103/PhysRevA.91.023801. [7] GU M. Advanced Optical Imaging Theory[M]. Heidelberg:Springer, 2006. [8] WOLF E. Electromagnetic diffraction in optical systems-I. An integral representation of the image field[J]. Proceedings of the Royal Society A, 1959, 253(1274):349-357. DOI:10.1098/rspa.1959.0199. [9] RICHARDS B, WOLF E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society A, 1959, 253(1274):358-379. DOI:10.1098/rspa.1959.0200. [10] EHMKE T, NITZSCHE T H, KNEBL A, et al. Molecular orientation sensitive second harmonic microscopy by radially and azimuthally polarized light[J]. Biomedical Optics Express, 2014, 5(7):2231-2246. DOI:10.1364/BOE.5.002231. [11] BEKSHAEV A Y. Corrigendum:Subwavelength particles in an inhomogeneous light field:optical forces associated with the spin and orbital energy flows[J]. Journal of Optics, 2016, 18(2):029501. DOI:10.1088/2040-8978/18/2/029501. [12] DAI X B, LI Y Q, LIU L H. Tight focusing properties of hybrid-order Poincaré sphere beams[J]. Optics Communications, 2018, 426:46-53. DOI:10.1016/j.optcom.2018.05.017. [13] LERMAN G, STERN L, LEVY U. Generation and tight focusing of hybridly polarized vector beams[J]. Optics Express, 2010, 18(26):27650-7. DOI:10.1364/OE.18.027650. [14] CHEN R, AGARWAL K, SHEPPARD C J, et al. Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system[J]. Optics Letters, 2013, 38(16):3111-3114. DOI:10.1364/OL.38.003111. [15] JESACHER A, FÜRHAPTER S, BERNET S, et al. Size selective trapping with optical "cogwheel" tweezers[J]. Optics Express, 2004, 12(17):4129-4135. DOI:10.1364/OPEX.12.004129. [16] HNATOVSKY C, SHVEDOV V, KROLIKOWSKI W, et al. Revealing local field structure of focused ultrashort pulses[J]. Physical Review Letters, 2011, 106(12):123901. DOI:10.1103/PhysRevLett.106.123901. [17] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11):8185. DOI:10.1103/PhysRevA.45.8185. [18] ALLEN L, PADGETT M J, BABIKER M. IV The orbital angular momentum of light[J]. Progress in Optics, 1999, 39(C):291-372. DOI:10.1016/S0079-6638(08)70391-3. [19] ZHAO Y, EDGAR J S, JEFFRIES G D, MCGLOIN D, & CHIU D T. Spin-to-orbital angular momentum conversion in a strongly focused optical beam[J]. Physical Review Letters, 2007, 99(7):073901. DOI:10.1103/PhysRevLett.99.073901. [20] BEKSHAEV A Y, SOSKIN M S, VASNETSOV M V. Transformation of higher-order optical vortices upon focusing by an astigmatic lens[J]. Optics Communications, 2004, 241(4/5/6):237-247. DOI:10.1016/j.optcom.2004.07.023. [21] AIELLO A, BANZER P, NEUGEBAUER M, et al. From transverse angular momentum to photonic wheels[J]. Nature Photonics, 2015, 9(12):789-795. DOI:10.1038/nphoton.2015.203. [22] ZHU W, SHVEDOV V, SHE W, et al. Transverse spin angular momentum of tightly focused full Poincaré beams[J]. Optics express, 2015, 23(26):34029-34041. DOI:10.1364/OE.23.034029. [23] BRADSHAW D S, ANDREWS D L. Chiral discrimination in optical trapping and manipulation[J]. New Journal of Physics, 2014, 16(10):103021. DOI:10.1088/1367-2630/16/10/103021. [24] LE KIEN F, SCHNEEWEISS P, RAUSCHENBEUTEL A. Dynamical polarizability of atoms in arbitrary light fields:General theory and application to cesium[J]. The European Physical Journal D, 2013, 67 Article number:92. DOI:10.1140/epjd/e2013-30729-x. [25] DING K, NG J, ZHOU L, et al. Realization of optical pulling forces using chirality[J]. Physical Review A, 2014, 89(6):063825. DOI:10.1103/PhysRevA.89.063825. [26] WEYRAUCH M, RAKOV M V. Dimerization in ultracold spinor gases with Zeeman splitting[J]. Physical Review B, 2017, 96:134404. DOI:10.1103/PhysRevB.96.134404.
|