[1] DATKO R. Extending a theorem of A. M. Liapunov to Hilbert spaces [J]. J Math Anal Appl, 1970, 32(3): 610-616 [2] DATKO R. Uniform asymptotic stability of evolutionary processes in Banach space [J]. SIAM J Math Anal, 1972, 3(3): 428-445 [3] PAZY A. On the applicability of Lyapunov’s theorem in Hilbert space [J]. SIAM J Math Anal, 1972, 3(2): 291-294 [4] 岳田, 雷国梁, 宋晓秋. 线性斜演化半流一致指数膨胀性的若干刻画 [J]. 数学进展, 2016, 45(3): 433-442 [5] 岳田, 宋晓秋. Banach空间中GC(0, e) 类广义发展算子的一致指数不稳定性 [J]. 中山大学学报(自然科学版), 2018, 57(5): 150-154 [6] MUREŞAN M, PREDA C, PREDA P. Individual stability and instability for evolutionary processes [J]. Acta Math Hungar, 2017, 153(1): 16-23 [7] BARREIRA L, VALLS C. Admissibility for nonuniform exponential contractions [J]. J Differ Equ, 2010, 249(11): 2889-2904 [8] PREDA P, PREDA C, MORARIU C. Exponential stability concepts for evolution families on \scriptsize $ {\mathbb{R}} $ \normalsize [J]. Monatsh Math, 2015, 178(4): 611-631 [9] 岳田, 宋晓秋. 线性斜积半流的一致指数稳定性的若干刻画 [J]. 浙江大学学报(理学版), 2018, 45(5): 545-548 [10] BǍTǍRAN F, PREDA C, PREDA P. Extending some results of L. Barreira and C. Valls to the case of linear skew-product semiflows [J]. Results Math, 2017, 72(1): 965-978 [11] PREDA C, PREDA P, BǍTǍRAN F. An extension of a theorem of R. Datko to the case of (non)uniform exponential stability of linear skew-product semiflows [J]. J Math Anal Appl, 2015, 425(2): 1148-1154 [12] PREDA C, ONOFREI O R. Nonuniform exponential dichotomy for linear skew-product semiflows over semiflows [J]. Semigroup Forum, 2018, 96(2): 241-252
|