华东师范大学学报(自然科学版) ›› 2021, Vol. 2021 ›› Issue (3): 96-104.doi: 10.3969/j.issn.1000-5641.2021.03.010

• 计算机科学 • 上一篇    下一篇

基于多通道卷积神经网络的中文文本关系抽取

梁艳春, 房爱莲*()   

  1. 华东师范大学 计算机科学与技术学院,上海 200062
  • 收稿日期:2020-05-18 出版日期:2021-05-25 发布日期:2021-05-26
  • 通讯作者: 房爱莲 E-mail:alfang@cs.ecnu.cdu.cn

Chinese text relation extraction based on a multi-channel convolutional neural network

Yanchun LIANG, Ailian FANG*()   

  1. School of Computer Science and Technology, East China Normal University, Shanghai 200062, China
  • Received:2020-05-18 Online:2021-05-25 Published:2021-05-26
  • Contact: Ailian FANG E-mail:alfang@cs.ecnu.cdu.cn

摘要:

给出了一种多通道卷积神经网络(Convolutional Neural Network, CNN)方法实现中文文本端到端的关系抽取. 每个通道用分层的网络结构, 在传播过程中互不影响, 使神经网络能学习到不同的表示. 结合中文语言的难点, 加入注意力机制(Attention Mechanism, Att)获取更多的语义特征, 并通过分段平均池化融入句子的结构信息. 经过最大池化层获得句子的最终表示后, 计算关系得分, 并用排序损失函数(Ranking-Loss Function, RL)代替交叉熵函数进行训练. 实验结果表明, 提出的MCNN_Att_RL (Multi CNN_Att_RL)模型能有效提高关系抽取的查准率、召回率和F1值.

关键词: 关系抽取, 多通道CNN, 注意力机制, 中文文本

Abstract:

This paper presents an end-to-end method for Chinese text relation extraction based on a multi-channel CNN (convolutional neural network). Each channel is stacked with a layered neural network; these channels do not interact during recurrent propagation, which enables a neural network to learn different representations. Considering the nuances of the Chinese language, we employed the attention mechanism to extract the semantic features of a sentence, and then integrate structural information using piecewise average pooling. After the maximum pooling layer, the final representation of the sentence is obtained and a relational score is calculated. Finally, the ranking-loss function is used to replace the cross-entropy function for training. The experimental results show that the MCNN_Att_RL (Multi CNN_Att_RL) model proposed in this paper can effectively improve the precision, recall, and F1 value of entity relation extraction.

Key words: relation extraction, multi-channel CNN, attention mechanism, Chinese text

中图分类号: