1 |
RUFFO R, HONG S S, CHAN C K, et al. Impedance analysis of silicon nanowire lithium-ion battery anodes. The Journal of Physical Chemistry C, 2009, 113 (26): 11390- 11398.
doi: 10.1021/jp901594g
|
2 |
WU J, MA F, LIU X, et al. Recent progress in advanced characterization methods for silicon-based lithium-ion batteries. Small Methods, 2019, 3 (10): 1900158.
doi: 10.1002/smtd.201900158
|
3 |
WANG J, TANG H, ZHANG L, et al. Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nature Energy, 2016, (1): 1- 9.
|
4 |
LIAO D, KUANG X, XIANG J, et al. A silicon anode material with layered structure for the lithium-ion battery. Journal of Physics Conference Series, 2018, 986 (1): 12- 24.
|
5 |
KIM Y Y, LEE J H, KIM H J. Nanoporous silicon flakes as anode active material for lithium-ion batteries. Physica E: Low-dimensional Systems and Nanostructures, 2017 85, 223- 226.
|
6 |
XIAO J, XU W, WANG D, et al. Stabilization of silicon anode for Li-ion batteries. Journal of The Electrochemical Society, 2010, 157 (10): A1047- A1051.
doi: 10.1149/1.3464767
|
7 |
MAGASINSKI A, DIXON P, HERTZBERG B, et al. High-performance lithium-ion anodes USING a hierarchical bottom-up approach. Nature Materials, 2010, (9): 353- 358.
|
8 |
DU F, WANG K, CHEN J. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. Journal of Materials Chemistry, 2016, (A4): 32- 50.
|
9 |
YAO Y, MCDOWELL M T, RYU I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Letters, 2011, (11): 2949- 2954.
|
10 |
PARK M H, KIM G, JOO J, et al. Silicon nanotube battery anodes. Nano Letters, 2009, 9 (11): 3844- 3847.
doi: 10.1021/nl902058c
|
11 |
EPUR R, HANUMANTHA P J, DATTA M K, et al. A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity. Journal of Materials Chemistry A, 2015, 3 (20): 11117- 11129.
doi: 10.1039/C5TA00961H
|
12 |
WU H, CHAN G, CHOI J W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nature Nanotechnology, 2012, 7 (5): 310- 315.
doi: 10.1038/nnano.2012.35
|
13 |
XING Y, ZHANG L, MAO S, et al. Core-shell structure of porous silicon with nitrogen-doped carbon layer for lithium-ion batteries. Materials Research Bulletin, 2018 108, 170- 175.
|
14 |
AN W, GAO B, MEI S, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nature Communications, 2019, 10 (1): 1447- 1452.
doi: 10.1038/s41467-019-09510-5
|
15 |
LIU N, WU H, MCDOWELL M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Letters, 2012, 12 (6): 3315- 3321.
doi: 10.1021/nl3014814
|
16 |
ZHANG L, RANJUSHA R, GUO H P, et al. A green and facile way to prepare granadilla-like silicon-based anode materials for Li-ion batteries. Advanced Functional Materials, 2016, 26 (3): 440- 446.
doi: 10.1002/adfm.201503777
|
17 |
CHEN L F, ZHANG X D, LIANG H W, et al. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano, 2012, (6): 7092- 7102.
|
18 |
INAGAKI M, KONNO H, TANAIKE O. Carbon materials for electrochemical capacitors. Power Sources, 2010, 195, 7880- 7903.
doi: 10.1016/j.jpowsour.2010.06.036
|
19 |
PODYACHEVA O Y, CHEREPANOVA S V, ROMANENKO A I, et al. Nitrogen doped carbon nanotubes and nanofibers: Composition, structure, electrical conductivity and capacity properties. Carbon, 2017, 122, 475- 483.
doi: 10.1016/j.carbon.2017.06.094
|
20 |
JIN N, SU Z, YUE N, et al. Direct amination of Si nanoparticles for the preparation of Si@ultrathin SiOx@graphene nanosheets as high performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3 (39): 19892- 19900.
doi: 10.1039/C5TA05386B
|
21 |
CHEN Y, SHI L, GUO S, et al. A general strategy towards carbon nanosheets from triblock polymers as high-rate anode materials for lithium and sodium ion batteries. Journal of Materials Chemistry A, 2017, (5): 19866- 19874.
|
22 |
SHENG Z H, SHAO L, CHEN J J, et al. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. Acs Nano, 2011, 5 (6): 4350- 4358.
doi: 10.1021/nn103584t
|
23 |
ZHOU X S, YIN Y X, WAN L J, et al. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries. Advanced Energy Materials, 2012, (11): 1086- 1090.
|
24 |
WANG B, LI X, ZHANG X, et al. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium-ion battery anodes. Acs Nano, 2013, 7 (2): 1437- 1445.
doi: 10.1021/nn3052023
|
25 |
YANG S, SONG H, CHEN X. Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries. Electrochemistry Communications, 2006, 8 (1): 137- 142.
doi: 10.1016/j.elecom.2005.10.035
|