华东师范大学学报(自然科学版) ›› 2022, Vol. 2022 ›› Issue (1): 31-42.doi: 10.3969/j.issn.1000-5641.2022.01.005
陈佳楠1, 李志鹏1, 蒋延荣1, 胡竹斌1,2, 孙海涛1,3,*(), 孙真荣1,3,*()
收稿日期:
2021-03-24
出版日期:
2022-01-25
发布日期:
2022-01-18
通讯作者:
孙海涛,孙真荣
E-mail:htsun@phy.ecnu.edu.cn;zrsun@phy.ecnu.edu.cn
Jianan CHEN1, Zhipeng LI1, Yanrong JIANG1, Zhubin HU1,2, Haitao SUN1,3,*(), Zhenrong SUN1,3,*()
Received:
2021-03-24
Online:
2022-01-25
Published:
2022-01-18
Contact:
Haitao SUN,Zhenrong SUN
E-mail:htsun@phy.ecnu.edu.cn;zrsun@phy.ecnu.edu.cn
摘要:
结合阴离子光电子能谱(Negative Ion Photoelectron Spectroscopy, NIPES)实验和量子化学计算, 研究了广泛存在于大气气溶胶中的SO3–和HSO3–的电子结构、微溶剂化作用及其稳定化机制. 首先, 基于高分辨NIPES测得了上述两种阴离子SO3–和HSO3–的垂直电离能((3.31 ± 0.02)和(3.91 ± 0.02) eV)和绝热电离能((3.02 ± 0.05)和(3.56 ± 0.05) eV). 进一步发现, 结合核系综方法和Dyson轨道计算可以很好地模拟实验测得NIPES, 而传统基于态密度方法不能很好地反映核振动效应、电离概率和电离过程中的轨道弛豫效应. 此外, 系统研究了HSO3–·(H2O)n (n = 0 ~ 5)体系的微溶剂化效应, 结果发现, 随着水分子数目的增加, 络合体系的稳定性增强, 其中静电作用占主导, 诱导作用也逐渐发挥重要作用. 相信本研究将有利于推动基于硫酸盐的大气气溶胶模型的完善, 为有效控制我国雾霾形成提供基础科学依据.
中图分类号:
陈佳楠, 李志鹏, 蒋延荣, 胡竹斌, 孙海涛, 孙真荣. 大气气溶胶中SO3–和HSO3–的电子结构和微溶剂化作用研究[J]. 华东师范大学学报(自然科学版), 2022, 2022(1): 31-42.
Jianan CHEN, Zhipeng LI, Yanrong JIANG, Zhubin HU, Haitao SUN, Zhenrong SUN. Study of electronic structures and the micro-solvation effect of SO3– and HSO3– in atmospheric aerosols[J]. Journal of East China Normal University(Natural Science), 2022, 2022(1): 31-42.
表2
基于SO3–和HSO3–平衡结构计算的电离能和电离强度"
末态 | SO3– | HSO3– | |||
| | | | ||
0 | 3.7324 | 0.9605 | 3.8994 | 0.9538 | |
1 | 5.2993 | 0.4698 | 3.8994 | 0.8537 | |
2 | 6.6217 | 0.4561 | 5.2923 | 0.6892 | |
3 | 6.6217 | 0.4561 | 5.7534 | 0.8457 | |
4 | 7.7595 | 0.4014 | 6.3672 | 0.7992 | |
5 | 7.7596 | 0.4014 |
表4
HOSO2–·(H2O)n (n = 1 ~ 5)中氢键作用的能量分解(基于SAPT)"
络合物 | Etot | EB/n | Eelst | Edis | Eind | Eexch |
HOSO2–·H2O | –17.50 | –17.5 | –26.95 (65.8%) | –7.86 (19.2%) | –6.15 (15.0%) | 23.46 |
HOSO2–·(H2O)2 | –31.11 | –15.6 | –47.83 (60.5%) | –13.39 (16.9%) | –17.85 (22.6%) | 47.96 |
HOSO2–·(H2O)3 | –45.82 | –15.3 | –65.81 (62.1%) | –18.50 (17.5%) | –21.60 (20.4%) | 60.08 |
HOSO2–·(H2O)4 | –54.39 | –13.6 | –79.68 (63.4%) | –22.25 (17.7%) | –23.77 (18.9%) | 71.31 |
HOSO2–·(H2O)5 | –66.75 | –13.4 | –89.84 (61.3%) | –25.23 (17.2%) | –31.39 (21.4%) | 79.70 |
1 | ETHERINGTON J R, COLE J A, FERGUSON S J. The nitrogen and sulphur cycles. Journal of Ecology, 1988, 76 (3): 904. |
2 |
MARCO J F, AGUDELO A C, GANCEDO J R, et al. Surface spectroscopic study of the behaviour of a thin TiN layer as protective coating of iron against corrosion by humid SO2– aggressive environments . Surface and Interface Analysis, 1998, 26 (9): 667- 673.
doi: 10.1002/(SICI)1096-9918(199808)26:9<667::AID-SIA413>3.0.CO;2-0 |
3 | BRüHL C, LELIEVELD J, HöPFNER M, et al. Stratospheric SO2 and sulphate aerosol, model simulations and satellite observations . Atmospheric Chemistry & Physics Discussions, 2013, 13 (4): 11395- 11425. |
4 |
KAIHO K, KAJIWARA Y, NAKANO T, et al. End-permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle. Geology, 2001, 29 (9): 815.
doi: 10.1130/0091-7613(2001)029<0815:EPCBAB>2.0.CO;2 |
5 | 王明康, 刘小红. 积云中硫酸盐形成机制的研究. 气象科学, 1990, 10 (2): 157- 165. |
6 |
LIN M, ZHANG X, LI M, et al. Five-S-isotope evidence of two distinct mass-independent sulfur isotope effects and implications for the modern and archean atmospheres. Proceedings of the National Academy of Sciences, 2018, 115 (34): 8541.
doi: 10.1073/pnas.1803420115 |
7 |
KOLB C E, JAYNE J T, WORSNOP D R, et al. Gas phase reaction of sulfur trioxide with water vapor. Journal of the American Chemical Society, 1994, 116 (22): 10314- 10315.
doi: 10.1021/ja00101a067 |
8 |
JAYNE J T, PSCHL U, CHEN Y M, et al. Pressure and temperature dependence of the gas-phase reaction of SO3 with H2O and the heterogeneous reaction of SO3 with H2O/H2SO4 surfaces . The Journal of Physical Chemistry A, 1997, 101 (51): 10000- 10011.
doi: 10.1021/jp972549z |
9 |
LOVEJOY E R, HANSON D R, HUEY L G. Kinetics and products of the gas-phase reaction of SO3 with water . The Journal of Physical Chemistry, 1996, 100 (51): 19911- 19916.
doi: 10.1021/jp962414d |
10 |
POMMERENING C A, BACHRACH S M, SUNDERLIN L S. Addition of protonated water to SO3. The Journal of Physical Chemistry A, 1999, 103 (9): 1214- 1220.
doi: 10.1021/jp984104w |
11 |
KOEVOETS R A, VERSTEEGEN R M, KOOIJMAN H, et al. Molecular recognition in a thermoplastic elastomer. Journal of the American Chemical Society, 2005, 127 (9): 2999- 3003.
doi: 10.1021/ja0451160 |
12 |
MOROKUMA K, MUGURUMA C. Ab initio molecular orbital study of the mechanism of the gas phase reaction SO3 + H2O: Importance of the second water molecule . Journal of the American Chemical Society, 1994, 116 (22): 10316- 10317.
doi: 10.1021/ja00101a068 |
13 |
TOWNSEND T M, ALLANIC A, NOONAN C, et al. Characterization of sulfurous acid, sulfite, and bisulfite aerosol systems. The Journal of Physical Chemistry A, 2012, 116 (16): 4035- 4046.
doi: 10.1021/jp212120h |
14 |
VOEGELE A F, TAUTERMANN C S, RAUCH C, et al. On the formation of the sulfonate ion from hydrated sulfur dioxide. The Journal of Physical Chemistry A, 2004, 108 (17): 3859- 3864.
doi: 10.1021/jp0377578 |
15 |
MISIEWICZ J P, MOORE K B, FRANKE P R, et al. Sulfurous and sulfonic acids: predicting the infrared spectrum and setting the surface straight. The Journal of Chemical Physics, 2020, 152 (2): 024302.
doi: 10.1063/1.5133954 |
16 | RISBERG E D, ERIKSSON L, MINK J, et al. Sulfur X-ray absorption and vibrational spectroscopic study of sulfur dioxide, sulfite, and sulfonate solutions and of the substituted sulfonate ions X3CSO3–(X = H, Cl, F) . Inorganic Chemistry, 2009, 46 (20): 8332- 8348. |
17 |
HORNER D A, CONNICK R E. Equilibrium quotient for the isomerization of bisulfite ion from HSO3– to SO3H–. Inorganic Chemistry, 1986, 25 (14): 2414- 2417.
doi: 10.1021/ic00234a026 |
18 |
BROWN R E, BARBER F. Ab initio studies of the thermochemistry of the bisulfite and the sulfonate ions and related compounds. The Journal of Physical Chemistry A, 1995, 99 (20): 8071- 8075.
doi: 10.1021/j100020a034 |
19 |
VCHIRAWONGKWIN V, PORNPIGANON C, KRITAYAKORNUPONG C, et al. The stability of bisulfite and sulfonate ions in aqueous solution characterized by hydration structure and dynamics. The Journal of Physical Chemistry B, 2012, 116 (37): 11498- 11507.
doi: 10.1021/jp305648e |
20 |
HAYON E, TREININ A, WILF J. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2–, SO3–, SO4–, and SO5– radicals . Journal of the American Chemical Society, 1972, 94 (1): 47- 57.
doi: 10.1021/ja00756a009 |
21 |
DOBRIN S, BOO B H, ALCONCEL L S, et al. Photoelectron spectroscopy of SO3– at 355 and 266 nm . The Journal of Physical Chemistry A, 2000, 104 (46): 10695- 10700.
doi: 10.1021/jp0025680 |
22 |
YANG J, LI L, WANG S, et al. Unraveling a new chemical mechanism of missing sulfate formation in aerosol haze: Gaseous NO2 with aqueous HSO3–/SO32–. Journal of the American Chemical Society, 2019, 141 (49): 19312- 19320.
doi: 10.1021/jacs.9b08503 |
23 |
WANG X B. Cluster model studies of anion and molecular specificities via electrospray ionization photoelectron spectroscopy. The Journal of Physical Chemistry A, 2017, 121 (7): 1389- 1401.
doi: 10.1021/acs.jpca.6b09784 |
24 |
WANG L S, WANG X B. Probing free multiply charged anions using photodetachment photoelectron spectroscopy. The Journal of Physical Chemistry A, 2000, 104 (10): 1978- 1990.
doi: 10.1021/jp9940093 |
25 |
WANG L S, DING C F, WANG X B, et al. Photodetachment photoelectron spectroscopy of multiply charged anions using electrospray ionization. Review of Scientific Instruments, 1999, 70 (4): 1957- 1966.
doi: 10.1063/1.1149694 |
26 |
WANG L S. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions. The Journal of Chemical Physics, 2015, 143 (4): 040901.
doi: 10.1063/1.4927086 |
27 | GUN J, MODESTOV A, KAMYSHNY A, et al. Electrospray ionization mass spectrometric analysis of aqueous polysulfide solutions. Microchimica Acta, 2004, 146 (3): 229- 237. |
28 |
MANISALI I, CHEN D D Y, SCHNEIDER B B. Electrospray ionization source geometry for mass spectrometry: Past, present, and future. Trends in Analytical Chemistry, 2006, 25 (3): 243- 256.
doi: 10.1016/j.trac.2005.07.007 |
29 |
BRUINS A P. Mechanistic aspects of electrospray ionization. Journal of Chromatography A, 1998, 794 (1-2): 345- 357.
doi: 10.1016/S0021-9673(97)01110-2 |
30 | LU T. Molclus Program [EB/OL]. (2021-11-23)[2021-12-15]. http://www.keinsci.com/research/molclus.html. |
31 |
BANNWARTH C, EHLERT S, GRIMME S. GFN2-xTB-An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. Journal of Chemical Theory and Computation, 2019, 15 (3): 1652- 1671.
doi: 10.1021/acs.jctc.8b01176 |
32 | FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16: Rev.A.03[CP]. Wallingford, CT: Gaussian Inc, 2016. |
33 |
BECKE A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. The Journal of Chemical Physics, 1993, 98 (7): 5648- 5652.
doi: 10.1063/1.464913 |
34 |
HARIHARAN P C, POPLE J A. The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta, 1973, 28 (3): 213- 222.
doi: 10.1007/BF00533485 |
35 |
DITCHFIE R, HEHRE W J, POPLE J J A. Self-consistent molecular-orbital methods. Ⅸ. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. The Journal of Chemical Physics, 1971, 54 (2): 724- 728.
doi: 10.1063/1.1674902 |
36 |
HEHRE W, DITCHFIELD R, POPLE J A. Self-consistent molecular orbital methods. Ⅻ. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 1972, 56 (5): 2257- 2261.
doi: 10.1063/1.1677527 |
37 |
YANG B, RODGERS M T. Alkali metal cation binding affinities of cytosine in the gas phase: revisited. Physical Chemistry Chemical Physics, 2014, 16 (30): 16110- 16120.
doi: 10.1039/C4CP01128G |
38 |
SILVERSTONE H, SINANOĞLU O. Many-electron theory of nonclosed-shell atoms and molecules. I. Orbital wavefunction and perturbation theory. The Journal of Chemical Physics, 1966, 44 (5): 1899- 1907.
doi: 10.1063/1.1726959 |
39 |
WOON D, DUNNING T. Gaussian basis sets for use in correlated molecular calculations. Ⅲ. The atoms aluminum through argon. The Journal of Chemical Physics, 1993, 98, 1358- 1371.
doi: 10.1063/1.464303 |
40 |
PURVIS G, BARTLETT R. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. The Journal of Chemical Physics, 1982, 76 (4): 1910- 1918.
doi: 10.1063/1.443164 |
41 |
ARBELO-GONZÁLEZ W, CRESPO-OTERO R, BARBATTI M. Steady and time-resolved photoelectron spectra based on nuclear ensembles. Journal of Chemical Theory and Computation, 2016, 12 (10): 5037- 5049.
doi: 10.1021/acs.jctc.6b00704 |
42 |
KOSSOSKI F, BARBATTI M. Nuclear ensemble approach with importance sampling. Journal of Chemical Theory and Computation, 2018, 14 (6): 3173- 3183.
doi: 10.1021/acs.jctc.8b00059 |
43 |
MELANIA O C, KRYLOV A I. Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: Theory, implementation, and examples. The Journal of Chemical Physics, 2007, 127 (23): 234106.
doi: 10.1063/1.2805393 |
44 |
BARBATTI M, RUCKENBAUER M, PLASSER F, et al. Newton-X: A surface-hopping program for nonadiabatic molecular dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4 (1): 26- 33.
doi: 10.1002/wcms.1158 |
45 |
TOZER D, HANDY N. Improving virtual Kohn-Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities. The Journal of Chemical Physics, 1998, 109, 10180- 10189.
doi: 10.1063/1.477711 |
46 |
QIN Z, HOU G L, YANG Z, et al. Negative ion photoelectron spectra of ISO3–, IS2O3–, and IS2O4– intermediates formed in interfacial reactions of ozone and iodide/sulfite aqueous microdroplets . The Journal of Chemical Physics, 2016, 145 (21): 214310.
doi: 10.1063/1.4969076 |
47 |
LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 2012, 33 (5): 580- 592.
doi: 10.1002/jcc.22885 |
48 |
HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics. Journal of Molecular Graphics, 1996, 14 (1): 33- 38.
doi: 10.1016/0263-7855(96)00018-5 |
49 |
TURNEY J M, SIMMONETT A C, PARRISH R M, et al. PSI4: An open-source ab initio electronic structure program. WIRES: Computational Molecular Science, 2012, 2 (4): 556.
doi: 10.1002/wcms.93 |
50 |
DUNNING T H. Gaussian basis sets for use in correlated molecular calculations. Ⅰ. The atoms boron through neon and hydrogen. The Journal of Chemical Physics, 1989, 90 (2): 1007- 1023.
doi: 10.1063/1.456153 |
[1] | 王倩倩, 赵振杰, 李欣, 谢文辉. CrN中原子位移的第一性原理计算研究[J]. 华东师范大学学报(自然科学版), 2020, 2020(1): 58-66. |
[2] | 谢伟佳, 王倩倩, 谢文辉. 有机-无机杂化钙钛矿(C4H9NH3)2PbBr4的第一原理计算研究[J]. 华东师范大学学报(自然科学版), 2019, 2019(2): 122-127. |
[3] | 沈宇皓, 唐政, 彭伟. 可用作量子比特的一种负价态VSiON缺陷中心[J]. 华东师范大学学报(自然科学版), 2017, 2017(2): 97-106. |
[4] | 诸 敏;韩景梅;谢文辉. 单层Al2O3膜在SiO2表面的第一性原理计算研究[J]. 华东师范大学学报(自然科学版), 2011, 2011(2): 62-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||