1 |
YAN X, CHEN Z, XU A, et al. Meta r-cnn: Towards general solver for instance-level low-shot learning [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 9577-9586.
|
2 |
SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning [EB/OL]. (2017-06-19)[2022-07-10]. https://arxiv.org/abs/1703.05175.
|
3 |
KOCH G, ZEMEL R, SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition [C]// ICML Deep Learning Workshop. 2015.
|
4 |
GARCIA V, BRUNA J. Few-shot learning with graph neural networks [EB/OL]. (2018-02-20)[2022-07-10]. https://arxiv.org/abs/1711.04043.
|
5 |
SHABAN A, BANSAL S, LIU Z, et al. One-shot learning for semantic segmentation [C]// British Machine Vision Conference. 2017.
|
6 |
RAKELLY K, SHELHAMER E, DARRELL T, et al. Conditional networks for few-shot semantic segmentation [C]// International Conference on Learning Representations. 2018.
|
7 |
ZHANG X, WEI Y, YANG Y, et al. Sg-one: Similarity guidance network for one-shot semantic segmentation. IEEE Transactions on Cybernetics, 2020, 50 (9): 3855- 3865.
|
8 |
KARLINSKY L, SHTOK J, HARARY S, et al. Repmet: Representative-based metric learning for classification and one-shot object detection [EB/OL]. (2018-11-18)[2022-07-10]. https://arxiv.org/abs/1806.04728.
|
9 |
KANG B, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 8420-8429.
|
10 |
LIU S, JIA J, FIDLER S, et al. Sgn: Sequential grouping networks for instance segmentation [C]// Proceedings of the IEEE International Conference on Computer Vision. 2017: 3496-3504.
|
11 |
GAO N, SHAN Y, WANG Y, et al. Ssap: Single-shot instance segmentation with affinity pyramid [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 642-651.
|
12 |
PINHEIRO P O, COLLOBERT R, DOLLÁR P. Learning to segment object candidates [EB/OL]. (2015-09-01)[2022-07-10]. https://arxiv.org/abs/1506.06204v2.
|
13 |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]// Proceedings of the IEEE International Conference on Computer Vision. 2017: 2961-2969.
|
14 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 3431-3440.
|
15 |
TIAN Z, SHEN C, CHEN H, et al. Fcos: Fully convolutional one-stage object detection [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 9627-9636.
|
16 |
VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning [C]// Advances in Neural Information Processing Systems. 2016.
|
17 |
MICHAELIS C, USTYUZHANINOV I, BETHGE M, et al. One-shot instance segmentation [EB/OL]. (2019-05-28)[2022-07-10]. https://arxiv.org/abs/1811.11507.
|
18 |
FAN Z, YU J G, LIANG Z, et al. Fgn: Fully guided network for few-shot instance segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 9172-9181.
|
19 |
GANEA D A, BOOM B, POPPE R. Incremental few-shot instance segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 1185-1194.
|
20 |
NGUYEN K, TODOROVIC S. Fapis: A few-shot anchor-free part-based instance segmenter [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 11099-11108.
|
21 |
CHOI D, YE-BIN M, KIM J, et al. FoxInst: A Frustratingly simple baseline for weakly few-shot instance segmentation [C]// International Conference on Learning Representations. 2021.
|
22 |
WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection [EB/OL]. (2019-05-28)[2022-07-10]. https://arxiv.org/abs/2003.06957.
|
23 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 2015, 28.
|
24 |
TIAN Z, SHEN C, WANG X, et al. Boxinst: High-performance instance segmentation with box annotations [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 5443-5452.
|
25 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: Common objects in context [C]// European Conference on Computer Vision. Cham, Zug: Springer, 2014: 740-755.
|
26 |
EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 2010, 88 (2): 303- 338.
|
27 |
DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database [C]// IEEE Conference on Computer Vision and Pattern Recognition. 2009: 248-255.
|