1 |
KUH GEORGE D. Assessing what really matters to student learning inside the national survey of student engagement. Change, 2001, 33 (3): 10- 17.
doi: 10.1080/00091380109601795
|
2 |
CAO Z, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017: 1302-1310.
|
3 |
REDMON J, FARHADI A. YOLO v3: An incremental improvement [EB/OL]. (2018-04-08)[2021-10-26].https://arxiv.org/pdf/1804.02767.pdf.
|
4 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2014: 580-587.
|
5 |
GIRSHICK R. Fast R-CNN [EB/OL]. (2015-9-27)[2021-10-26].https://arxiv.org/pdf/1504.08083.pdf.
|
6 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39 (6): 1137- 1149.
|
7 |
REDMON J, FARHADI A. YOLO 9000: Better, faster, stronger [C]//IEEE Conference on Computer Vision & Pattern Recognition. 2017: 6517-6525.
|
8 |
SANEIRO M, SANTOS O C, SALMERON-MAJADAS S, et al. Towards emotion detection in educational scenarios from facial expressions and body movements through multimodal approaches [J]. The Scientific World Journal, 2014: 484873.
|
9 |
LUCEY P, COHN J F, KANADE T, et al. The extended cohn-kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops. 2010: 94-101.
|
10 |
LEI F, WEI Y, HU J, et al. Student action recognition based on multiple features [C]//2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). 2019: 428-432.
|
11 |
LI P, WANG Q, ZENG H, et al. Local log-euclidean multivariate gaussian descriptor and its application to image classification. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39 (4): 803- 817.
|
12 |
LOWE D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94
|
13 |
林灿然, 许伟亮, 李逸. 基于多模态数据的课堂学生行为识别技术的探究. 现代计算机, 2020, (6): 70- 76.
|
14 |
LI X, WANG M, ZENG W, et al. A students’ action recognition database in smart classroom [C]//2019 14th International Conference on Computer Science & Education (ICCSE). 2019: 523-527.
|
15 |
SUN B, ZHAO K, XIAO Y, et al. BNU-LCSAD: A video database for classroom student action recognition [C]//Optoelectronic Imaging and Multimedia Technology VI. 2019: 111871V.
|
16 |
TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks [C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 4489-4497.
|
17 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2014-04-10)[2021-10-26].https://arxiv.org/pdf/1409.1556.pdf.
|
18 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
|
19 |
IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [C]//International Conference on Machine Learning. 2015: 448-456.
|
20 |
WANG H, SCHMID C. Action recognition with improved trajectories [C]//Proceedings of the IEEE International Conference on Computer Vision. 2013: 3551-3558.
|