华东师范大学学报(自然科学版) ›› 2021, Vol. 2021 ›› Issue (1): 36-52.doi: 10.3969/j.issn.1000-5641.201922017

• 物理学与电子学 • 上一篇    下一篇

深度学习在认知无线电中的应用研究综述

刘波1, 白晓东1,*(), 张更新1, 沈俊2, 谢继东1, 赵来定1, 洪涛1   

  1. 1. 南京邮电大学 通信与信息工程学院,南京 210003
    2. 西安空间无线电技术研究所,西安 710000
  • 收稿日期:2019-11-16 出版日期:2021-01-25 发布日期:2021-01-28
  • 通讯作者: 白晓东 E-mail:xdbai@njupt.edu.cn
  • 基金资助:
    国家自然科学基金(61701260, 91738201)

Review of deep learning in cognitive radio

Bo LIU1, Xiaodong BAI1,*(), Gengxin ZHANG1, Jun SHEN2, Jidong XIE1, Laiding ZHAO1, Tao HONG1   

  1. 1. College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
    2. CAST-Xi’an Institute of Space Radio Technology, Xi’an 710000, China
  • Received:2019-11-16 Online:2021-01-25 Published:2021-01-28
  • Contact: Xiaodong BAI E-mail:xdbai@njupt.edu.cn

摘要:

无线通信业务的发展使得频谱资源变得越发紧张, 而现有的频谱利用效率却不高, 这一矛盾很大程度上可归结为频谱的静态分配策略. 认知无线电(Cognitive Radio, CR)技术被广泛认为是解决频谱静态分配问题的可行方案. 深度学习作为机器学习的新兴分支, 近几年在学术界和产业界都取得了许多成果, 成为人工智能的驱动性技术之一. 对深度学习在认知无线电中的应用进行了调研, 简要介绍了认知无线电和深度学习各自的发展, 且着重介绍了深度学习算法在频谱预测、频谱环境感知、信号分析等认知无线电关键技术环节中的应用, 并在最后对此进行了总结和探讨.

关键词: 认知无线电, 深度学习, 卷积神经网络, 循环神经网络, 无线通信

Abstract:

The development of wireless communication has made spectrum resources increasingly scarce. Existing spectrum resources, however, are not currently used in an efficient way. This contradiction can usually be attributed to the problem created by static spectrum allocation strategies. Cognitive radio (CR) is widely regarded as a feasible solution to solve the problem of static spectrum allocation. In recent years, deep learning, an emerging field of machine learning, has contributed to a number of notable research and application achievements. It has become one of the driving technologies behind artificial intelligence. In this paper, we investigated the application of deep learning to CR; this includes the development of cognitive radio and deep learning as well as the usage of deep learning models in key technologies for CR (such as spectrum prediction, spectrum environment sensing, signal analysis, etc.). Lastly, we summarize and discuss conclusions from this review.

Key words: cognitive radio(CR), deep learning, convolutional neural network, recurrent neural network, wireless communication

中图分类号: