1 |
孙明慧. 数字化服装产品设计可重用技术研究 [D]. 上海: 东华大学, 2008.
|
2 |
安立新. 服装款式图提取及其模式识别的研究 [D]. 上海: 东华大学, 2015.
|
3 |
LEE J, SUL I H. Construction of garment pattern shape information system using image analysis and shape recognition techniques. International Journal of Clothing Science and Technology, 2016, 28 (4): 543- 555.
|
4 |
ZHANG Z W, CUI P, ZHU W W. Deep learning on graphs: A survey [EB/OL]. (2020-03-17)[2020-12-10]. https://ieeexplore.ieee.org/document/9039675.
|
5 |
GORI M, MONFARDINI G, SCARSELLI F. A new model for learning in graph domains [C]// Proceedings of the 2005 IEEE International Joint Conference on Neural Networks. 2005: 729-734.
|
6 |
SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 2013, 30 (3): 83- 98.
|
7 |
BRUNA J B, ZAREMBA W, SZLAM A, et al. Spectral networks and deep locally connected networks on graphs [EB/OL]. (2020-02-20)[2020-10-11]. http://yann.lecun.com/exdb/publis/pdf/bruna-iclr-14.pdf.
|
8 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2017-02-22)[2020-12-09]. https://arxiv.org/pdf/1609.02907.pdf.
|
9 |
GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry [C]// Proceedings of the 34th International Conference on Machine Learning. 2017: 2053-2070.
|
10 |
SONG W P, XIAO Z P, WANG Y F, et al. Session-based social recommendation via dynamic graph attention networks [C]// Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. 2019: 555-563.
|
11 |
CHEN X L, LI L J, LI F F, et al. Iterative visual reasoning beyond convolutions [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7239-7248.
|
12 |
QI C R, SU H, MO K, et al. PointNet: Deep learning on point sets for 3D classification and segmentation [C]// Proceedings of the 30th IEEE conference on Computer Vision and Pattern Recognition. 2017: 77-85.
|
13 |
QI C R, YI L, SU H, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 5105-5114.
|
14 |
LIU Y C, FAN B, XIANG S M, et al. Relation-shape convolutional neural network for point cloud analysis [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 8887-8896.
|
15 |
SU H, JAMPANI V, SUN D Q, et al. SPLATNet: Sparse lattice networks for point cloud processing [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 2530-2539.
|
16 |
THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: Flexible and deformable convolution for point clouds [C]// Proceedings of the IEEE International Conference on Computer Vision. 2019: 6410-6419.
|
17 |
MONTI F, BOSCAINI D, MASCI J, et al. Geometric deep learning on graphs and manifolds using mixture model CNNs [C]// Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition. 2017: 5425-5434.
|
18 |
FEY M, LENSSEN J E, WEICHERT F, et al. SplineCNN: Fast geometric deep learning with continuous B-spline kernels [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 869-877.
|
19 |
GAO H Y, JI S W. Graph U-Nets [C]// Proceedings of the 36th International Conference on Machine Learning. 2019: 2083-2092.
|
20 |
YING R, YOU J, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018: 4805–4815.
|
21 |
LEE J, LEE I, KANG J. Self-attention graph pooling [C]// Proceedings of the 36th International Conference on Machine Learning. 2019: 6661-6670.
|
22 |
HE K, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015: 1026-1034.
|
23 |
PEITGEN H O, JÜRGENS H, SAUPE D. Chaos and Fractals [M]. 2nd ed. New York: Springer-Verlag, 2004.
|
24 |
ZHANG H, WU C R, ZHANG Z Y, et al. ResNeSt: Split-Attention networks [EB/OL]. (2020-12-30)[2021-01-08]. https://arxiv.org/pdf/2004.08955.pdf.
|
25 |
XU K, HU W H, LESKOVEC J, et al. How powerful are graph neural networks? [EB/OL]. (2019-02-22) [2020-12-11]. https://arxiv.org/pdf/1810.00826.pdf.
|
26 |
WU Z Q, RAMSUNDAR B, FEINBERG E N, et al. MoleculeNet: A benchmark for molecular machine learning. Chemical Science, 2018, 9 (2): 513- 530.
|