华东师范大学学报(自然科学版) ›› 2022, Vol. 2022 ›› Issue (4): 56-66.doi: 10.3969/j.issn.1000-5641.2022.04.006

• 计算机科学 • 上一篇    下一篇

一种面向服装样板图分类的图卷积神经网络

赵晓臻1, 童卫青1,*(), 刘咏梅2   

  1. 1. 华东师范大学 计算机科学与技术学院, 上海 200062
    2. 东华大学 服装与艺术设计学院, 上海 200051
  • 收稿日期:2021-02-04 出版日期:2022-07-25 发布日期:2022-07-19
  • 通讯作者: 童卫青 E-mail:wqtong@cs.ecnu.edu.cn

A graph convolutional neural network for garment pattern classification

Xiaozhen ZHAO1, Weiqing TONG1,*(), Yongmei LIU2   

  1. 1. School of Computer Science and Technology, East China Normal University, Shanghai 200062, China
    2. College of Fashion and Design, Donghua University, Shanghai 200051, China
  • Received:2021-02-04 Online:2022-07-25 Published:2022-07-19
  • Contact: Weiqing TONG E-mail:wqtong@cs.ecnu.edu.cn

摘要:

服装样板图的识别和分类是服装智能化生产和管理的重要技术. 提出了一种将服装样板图转化为图数据的建模法和一种能处理这类图数据的轻量级图神经网络GPC-GCN (Garment Pattern Classification Graph Convolutional Network). 所提出的图数据的建模法不但能够保留服装样板图中每个部件的形状信息, 还解决了服装样版图中服装部件可以随意放置的问题. 实验表明, 与既有的卷积神经网络和图神经网络相比较, 所提出的图数据建模法和图神经网络GPC-GCN对服装样板图的分类具有更优的性能.

关键词: 图卷积神经网络, 服装样板图, 图形分类

Abstract:

The identification and classification of garment patterns are important technologies for intelligent clothing production and management. This paper proposes a method to convert garment patterns into graphic data and subsequently proposes a lightweight graph neural network GPC-GCN (Garment Pattern Classification Graph Convolutional Network) that can process this graphic data. The proposed graph data modeling method can not only maintain information on the shape of each component in the garment pattern but also deal with the arbitrariness of the position of components in garment patterns. Experiments show that the proposed graph neural network GPC-GCN achieves a better result for the classification of garment patterns compared to convolutional neural networks and graph convolutional networks.

Key words: graph convolutional network, garment pattern, graph classification

中图分类号: