[1] YAN X F, HAN J W. gSpan:Graph-based substructure pattern mining[C]//Proceedings of the 2002 IEEE International Conference on Data Mining. 2002:721-724. [2] ELSEIDY M, ABDELHAMID E, SKIADOPOULOS S, et al. GraMi:Frequent subgraph and pattern mining in a single large graph[J]. Proceedings of the VLDB Endowment, 2014, 7:517-528. [3] CHEN C, YAN X F, ZHU F D, et al. gApprox:Mining frequent approximate patterns from a massive network[C]//7th IEEE International Conference on Data Mining. 2007:445-450. [4] FLORES-GARRIDO M, CARRASCO-OCHOA J A, MARTÍNEZ-TRINIDAD J F. AGraP:An algorithm for mining frequent patterns in a single graph using inexact matching[J]. Knowledge and Information Systems, 2015,2(44):385-406. [5] KURAMOCHI M, KARYPIS G. Finding frequent patterns in a large sparse graph[J]. Data Mining and Knowledge Discovery, 2005, 11(3):243-271. [6] NIJSSEN S, KOK J N. A quickstart in frequent structure mining can make a difference[C]//Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004:647-652. [7] ALONSO A G, PAGOLA J E M, CARRASCO-OCHOA J A, et al. Mining frequent connected subgraphs reducing the number of candidates[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases. 2008:365-376. [8] RANU S, SINGH A K. Graphsig:A scalable approach to mining significant subgraphs in large graph databases[C]//2009 IEEE 25th International Conference on Data Engineering. 2009:844-855. [9] CHENG H, YAN X F, HAN J W. Mining graph patterns[C]//Frequent Pattern Mining, Berlin:Springer, 2014:307-338. [10] KRISHNA V, SURI N R, ATHITHAN G. A comparative survey of algorithms for frequent subgraph discovery[J]. Current Science, 2011,:190-198. [11] CHOUDHURY S, PUROHIT S, LIN P, et al. Percolator:Scalable pattern discovery in dynamic graphs[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 2018:759-762. [12] INGALALLI V, IENCO D, PONCELET P. Mining frequent subgraphs in multigraphs[J]. Information Sciences, 2018, 451/452:50-66. [13] ALGULIEV R M, ALIGULIYEV R M, GANJALIYEV F S. Extracting a heterogeneous social network of academic researchers on the Web based on information retrieved from multiple sources[J]. American Journal of Operations Research, 2011, 1(2):33. [14] LIMA JR D P, GIACOMINI H C, TAKEMOTO R M, et al. Patterns of interactions of a large fish-parasite network in a tropical floodplain[J]. Journal of Animal Ecology, 2012, 81(4):905-913.. [15] GAO X B, XIAO B, TAO D C, et al. A survey of graph edit distance[J]. Pattern Analysis and Applications, 2010, 13(1):113-129. [16] HIDOVIĆ D, PELILLO M. Metrics for attributed graphs based on the maximal similarity common subgraph[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2004, 18(3):299-313. [17] DEHMER M, EMMERT-STREIB F. Comparing large graphs efficiently by margins of feature vectors[J]. Applied Mathematics and Computation, 2007, 188(2):1699-1710. [18] HOLDER L B, COOK D J, DJOKO S. Substucture discovery in the SUBDUE system[C]//KDD Workshop, 1994:169-180. [19] JIA Y, ZHANG J T, HUAN J. An efficient graph-mining method for complicated and noisy data with real-world applications[J]. Knowledge and Information Systems, 2011, 28(2):423-447. [20] FLORES-GARRIDO M, CARRASCO-OCHOA J A, MARTÍNEZ-TRINIDAD J F. Extensions to AGraP algorithm for finding a reduced set of inexact graph patterns[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32(1):1860012. [21] ACOSTA-MENDOZA N, GAGO-ALONSO A, CARRASCO-OCHOA J A, et al. Extension of canonical adjacency matrices for frequent approximate subgraph mining on multi-graph collections[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2017, 31(8):1750025. [22] ACOSTA-MENDOZA N, MORALES-GONZáLEZ A, GAGO-ALONSO A, et al. Image classification using frequent approximate subgraphs[C]//Iberoamerican Congress on Pattern Recognition. 2012:292-299. [23] ACOSTA-MENDOZA N, CARRASCO-OCHOA J A, MARTÍNEZ-TRINIDAD J F, et al. Image clustering based on frequent approximate subgraph mining[C]//Mexican Conference on Pattern Recognition. 2018:189-198. |