1 |
ZOPH B, LE Q V. Neural architecture search with reinforcement learning [EB/OL]. (2016-11-05)[2020-11-10]. https://openreview.net/forum?id=r1Ue8Hcxg.
|
2 |
ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition [C]// 2018 IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8697-8710.
|
3 |
BENDER G, KINDERMANS P J, ZOPH B, et al. Understanding and simplifying one-shot architecture search [C]// Proceedings of the 35th International Conference on Machine Learning. 2018: 550-559.
|
4 |
PHAM H, GUAN M Y, ZOPH B, et al. Efficient neural architecture search via parameter sharing [C]// Proceedings of the 35th International Conference on Machine Learning. 2018: 4092-4101.
|
5 |
YANG A, ESPERANÇA P M, CARLUCCI F M. NAS evaluation is frustratingly hard [EB/OL]. (2020-02-13)[2020-10-14]. https://arxiv.org/pdf/1912.12522v3.pdf.
|
6 |
GUO Z C, ZHANG X Y, MU H Y, et al. Single path one-shot neural architecture search with uniform sampling [C]// Proceedings of the 16th European Conference on Computer Vision. 2020: 544-560.
|
7 |
YU K C, SCIUTO C, JAGGI M, et al. Evaluating the search phase of neural architecture search [EB/OL]. (2019-11-22)[2020-11-03]. https://arxiv.org/pdf/1902.08142.pdf.
|
8 |
LIU H X, SIMONYAN K, VINYALS O, et al. Hierarchical representations for efficient architecture search [EB/OL]. (2018-02-22)[2020-09-15]. https://arxiv.org/pdf/1711.00436.pdf.
|
9 |
ZHONG Z, YAN J J, WU W, et al. Practical block-wise neural network architecture generation [C]// 2018 IEEE Conference on Computer Vision and Pattern Recognition. 2018: 2423-2432.
|
10 |
CAI H, CHEN T Y, ZHANG W N, et al. Efficient architecture search by network transformation [C]// Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. 2018: 2787-2794.
|
11 |
REAL E, AGGARWAL A, HUANG Y P, et al. Regularized evolution for image classifier architecture search [C]// The Thirty-Third AAAI Conference on Artificial Intelligence. 2019: 4780-4789.
|
12 |
LIANG J, MEYERSON E, MIIKKULAINEN R. Evolutionary architecture search for deep multitask networks [C]// Proceedings of the Genetic and Evolutionary Computation Conference. 2018: 466-473.
|
13 |
DONG J D, CHENG A C, JUAN D C, et al. DPP-Net: Device-aware progressive search for pareto-optimal neural architectures [C]// Computer Vision–ECCV 2018. 2018: 540-555.
|
14 |
CHU X X, ZHANG B, XU R J, et al. FairNAS: Rethinking evaluation fairness of weight sharing neural architecture search [EB/OL]. (2020-03-10)[2020-09-15]. https://arxiv.org/pdf/1907.01845v4.pdf.
|
15 |
LUO R Q, TIAN F, QIN T, et al. Neural architecture optimization [C]// Proceedings of the 32nd Conference on Neural Information Processing Systems. 2018: 7827-7838.
|
16 |
YOU S, HUANG T, YANG M M, et al. GreedyNAS: Towards fast one-shot NAS with greedy supernet [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1996-2005.
|
17 |
CAI H, GAN C, WANG T Z, et al. Once-for-all: Train one network and specialize it for efficient deployment [EB/OL]. (2019-09-26)[2020-11-21]. https://openreview.net/forum?id=HylxE1HKwS.
|
18 |
LIU H X, SIMONYAN K, YANG Y M. DARTS: Differentiable architecture search [EB/OL]. (2019-04-23)[2020-08-10]. http://export.arxiv.org/pdf/1806.09055.
|
19 |
CHU X X, ZHOU T B, ZHANG B, et al. Fair DARTS: Eliminating unfair advantages in differentiable architecture search [C]// Computer Vision-ECCV 2020. 2020: 465-480.
|
20 |
XU Y H, XIE L X, ZHANG X P, et al. PC-DARTS: Partial channel connections for memory-efficient architecture search [EB/OL]. (2020-04-07)[2020-08-10]. https://arxiv.org/pdf/1907.05737v4.pdf.
|
21 |
CHEN X, XIE L X, WU J, et al. Progressive differentiable architecture search: Bridging the depth gap between search and evaluation [C]// 2019 IEEE/CVF International Conference on Computer Vision. 2019: 1294-1303.
|
22 |
HE K, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
|
23 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 4510-4520.
|