华东师范大学学报(自然科学版) ›› 2019, Vol. 2019 ›› Issue (5): 16-35.doi: 10.3969/j.issn.1000-5641.2019.05.002
陈远哲, 匡俊, 刘婷婷, 高明, 周傲英
收稿日期:
2019-07-29
出版日期:
2019-09-25
发布日期:
2019-10-11
通讯作者:
高明,男,教授,博士生导师,研究方向为教育计算、知识图谱、知识工程、用户画像、社会网络挖掘、不确定数据管理.E-mail:mgao@dase.ecnu.edu.cn.
E-mail:mgao@dase.ecnu.edu.cn
作者简介:
陈远哲,男,硕士研究生,研究方向为自然语言处理与知识图谱.E-mail:yzchen@stu.ecnu.edu.com.
基金资助:
CHEN Yuan-zhe, KUANG Jun, LIU Ting-ting, GAO Ming, ZHOU Ao-ying
Received:
2019-07-29
Online:
2019-09-25
Published:
2019-10-11
摘要: 共指消解旨在识别指向同一实体的不同表述,在文本摘要、机器翻译、自动问答和知识图谱等领域有着广泛的应用.然而,作为自然语言处理中的一个经典问题,它是一个NP-Hard的问题.本文首先对共指消解的基本概念进行介绍,对易混淆概念进行解析,并讨论了共指消解的研究意义及难点.本文进一步归纳梳理了共指消解的发展历程,将共指消解从技术层面划分为若干阶段,并介绍了各个阶段的代表性模型,探讨了各类模型的优缺点,其中着重介绍了基于规则、基于机器学习、基于全局最优化、基于知识库和基于深度学习的模型.接着对共指消解的评测会议进行介绍,对共指消解的语料库和常用评测指标进行解释和对比分析.最后,指出了当前共指消解模型尚未解决的问题,探讨了共指消解的发展趋势.
中图分类号:
陈远哲, 匡俊, 刘婷婷, 高明, 周傲英. 共指消解技术综述[J]. 华东师范大学学报(自然科学版), 2019, 2019(5): 16-35.
CHEN Yuan-zhe, KUANG Jun, LIU Ting-ting, GAO Ming, ZHOU Ao-ying. A survey on coreference resolution[J]. Journal of East China Normal University(Natural Sc, 2019, 2019(5): 16-35.
[1] 刘峤,李杨,段宏,等.知识图谱构建技术综述[J].计算机研究与发展, 2016, 53(3):582-600. [2] 王厚峰.指代消解的基本方法和实现技术[J].中文信息学报, 2002, 16(6):9-17. [3] GETOOR L, MACHANAVAJJHALA A. Entity resolution:Theory, practice&open challenge[J]. Proceedings of the Very Large Data Bases Endowment, 2012, 5(12):2018-2019. [4] MELLI G, ESTER M. Supervised identification and linking of concept mentions to a domain-specific ontology[C]//Proceedings of the 19th ACM International Conference on Information&Knowledge Management. 2010:1717-1720. [5] JURAFSKY D, MARTIN H. Speech and Language Processing:An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition[M]. New Delhi:Pearson Education, 2000. [6] LANG J, QIN B, LIU T, et al. Intra-document coreference resolution:The state of the art[J]. Journal of Chinese Language and Computing, 2008,17(4):227-253. [7] 宋洋,王厚峰.共指消解研究方法综述[J].中文信息学报, 2015, 29(1):1-12. [8] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]//Proceedings of NAACL-HLT. 2016:260-270. [9] 高艳红,李爱萍,段利国.面向实体链接的多特征图模型实体消歧方法[J].计算机应用研究, 2017, 34(10):2909-2914. [10] LI Y, WANG C, HAN F Q, et al. Mining evidences for named entity disambiguation[C]//Proceedings of the 19th International Conference on Knowledge Discovery and Data Mining. 2013:1070-1078. [11] DEEMTER K V, KIBBLE R. On coreferring:Coreference in MUC and related annotation schemes[J]. Computational Linguistics, 2000, 26(4):629-637. [12] MITKOV R. Anaphora resolution:The state of the art[D]. Wolverhampton:University of Wolverhampton, 1999. [13] HOBBS J R. Resolving pronoun references[J]. Journal of Lingua, 1978, 44:311-338. [14] WALKER M A. Evaluating discourse processing algorithms[C]//Proceedings of the 27th Annual Meeting of Association of Computational Linguistics. Vancouver, 1989. [15] GROSZ B, JOSHI A, WEINSTEIN S. Centering:A framework for modelling the local coherence of discourse[J]. Journal of Computational Linguistics, 1995, 21(2):203-225. [16] MCCARTHY J, LEHNERT W. Using decision trees for coreference resolution[C]//Proceedings of the 14th International Joint Conference on Artificial Intelligence. 1995. [17] PONZETTO S P, STRUBE M. Exploiting semantic role labeling, wordnet and wikipedia for coreference resolution[C]//Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics. 2006:192-199. [18] RAHMAN A, NG V. Supervised models for coreference resolution[C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. 2009:968-977. [19] CARDIE C, WAGSTAFF K. Noun phrase coreference as clustering[C]//Proceedings of the Joint Conference on Empirical Methods in NLP and Very Large Corpora. 1999:277-308. [20] 谢永康,周雅倩,黄萱菁.一种基于谱聚类的共指消解方法[J].中文信息学报, 2007, 21(2):77-82. [21] 周俊生,黄书剑,陈家骏,等.一种基于图划分的无监督汉语指代消解算法[J].中文信息学报, 2007, 21(2):77-82. [22] MULLER C, RAPP S, STRUBE M. Applying co-training to reference resolution[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. 2002:352-359 [23] DENIS P, BALDRIDGE J. Joint determination of anaphoricity and coreference resolution using integer programming[C]//Proceedings of Human Language Technologies 2007:The Conference of the North American Chapter of the Association for Computational Linguistics. 2007:236-243. [24] RAGHUNATHAN K, LEE H, RANGARAJAN S, et al. A multi-pass sieve for coreference resolution[C]//Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. 2010. [25] VESDAPUNT N, BELLARE K, DALVI N. Crowdsourcing algorithms for entity resolution[C]//Proceedings of the VLDB Endowment. 2014:1071-1082. [26] RAHMAN A, NG V. Coreference resolution with world knowledge[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics. 2011:814-824. [27] RATINOV L, ROTH D. Learning-based Multi-Sieve Co-Reference Resolution with Knowledge[M]. Association for Computational Linguistics, 2012:1234-1244. [28] DURRETT G, KLEIN D. Easy Victories and Uphill Battles in Coreference Resolution[M]. Association for Computational Linguistics, 2013:1971-1982. [29] SORALUZE A, ARREGI O, ARREGI X, et al. Enriching basque coreference resolution system using semantic knowledge sources[C]//Proceedings of the 2nd Workshop on Coreference Resolution Beyond OntoNotes. Association for Computational Linguistics, 2017:8-16. [30] WISEMAN S, RUSH A M, SHIEBER S M. Learning global features for coreference resolution[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. 2016. [31] CLARK K, MANNING C D. Deep reinforcement learning for mention-ranking coreference models[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. 2016:2256-2262. [32] LEE K, HE L H, LEWIS M, et al. End-to-end neural coreference resolution[C]//Conference on Empirical Methods in Natural Language Processing. 2017:188-197. [33] HAGHIGHI A, KLEIN D. Simple coreference resolution with rich syntactic and semantic features[C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. 2009:1152-1161. [34] CONVERSE S P. Pronominal Anaphora Resolution in Chinese[D]. Pennsylvania:University of Pennsylvania, 2006. [35] SIDNER C. Focusing for interpretation of pronouns[J]. Computational Linguistics. 1981, 7(4):217-231. [36] BRENNAN S E, FRIEDMAN M W, POLLARD C. A centering approach to pronouns[C]//Proceedings of the 25th Annual Meeting of the Association for Computational Linguistics. 1987:155-162. [37] GE N Y, HALE J, CHARNIAK E. A statistical approach to anaphora resolution[C]//Proceedings of the ACL 1998 Workshop on Very Large Corpora. 1998. [38] MCCALLUM A, WELLNER B. Conditional models of identity uncertainty with application to noun coreference[C]//International Conference on Neural Information Processing System. 2004:905-912. [39] NG V. Unsupervised models for coreference resolution[C]//Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing. 2008:640-649. [40] BHATTACHARYA I, GETOOR L. A latent Dirichlet model for unsupervised entity resolution[C]//SIAM International Conference on Data Mining. 2006. [41] RAGHAVAN P, FOSLERLUSSIER E, LAI A M. Exploring semi-supervised coreference resolution of medical concepts using semantic and temporal features[C]//Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. 2012:731-741. [42] MCCALLUM A, WELLNER B. Conditional models of identity uncertainty with application to noun coreference[C]//Proceedings of Neural Information Processing Systems. 2004:905-912. [43] YANG X, SU J. Coreference resolution using semantic relatedness information from automatically discovered patterns[C]//Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics. 2007:528-535. [44] CHEN C, NG V. Combining the best of two worlds:A hybrid approach to multilingual coreference resolution[C]//Joint Conference on EMNLP&CONLL-Shared Task. Association for Computational Linguistics, 2012:56-63. [45] LEE H, PEIRSMAN Y, CHANG A, et al. Stanford's multi-pass sieve coreference resolution system at the conll-2011 shared task[C]//Proceedings of the 15th Conference on Computational Natural Language Learning:Shared Task. 2011:28-34. [46] FERNANDES E R, SANTOS C N, MILIDIU R L. Latent trees for coreference resolution[J]. Computational Linguistics, 2014, 40(4):801-835. [47] FERNANDES E R, MILIDIU R L. Entropy-guided feature generation for structured learning of Portuguese dependency parsing[C]//Computational Processing of the Portuguese Language. 2012:146-156. [48] YU C N J, JOACHIMS T. Learning structural SVMs with latent variables[C]//Proceedings of the 26th Annual International Conference on Machine Learning. 2009:1169-1176. [49] DAUME H, MARCU D. Learning as search optimization:Approximate large margin methods for structured prediction[C]//Proceedings of the 22nd International Conference on Machine Learning. 2005:169-176. [50] BJORKELUND A, KUHN J. Learning structured perceptrons for coreference resolution with latent antecedents and non-local features[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Lingustics. 2014:47-57. [51] MARTSCHAT S, STRUBE M. Latent structures for coreference resolution[J]. Transactions of the Association for Computational Linguistics, 2015(3):405-418. [52] RECASENS M, MARNEFFE M C, POTTS C. The life and death of discourse entities:Identifying singleton metions[C]//The 2013 Annual Conference of the North American Chapter of the Association for Computational Linguistics. 2013:627-633. [53] MARNEFFE M C, RECASENS M, POTTS C, et al. Modeling the lifespan of discourse entities with application to coreference resolution[J]. Journal of Artificial Intelligence Research, 2015, 52:445-475. [54] PARK C, CHOI K H, LEE C K, et al. Korean coreference resolution with guided mention pair model using deep learning[J]. ETRI Journal, 2016, 38(6):1207-1217. [55] CLARK K, MANNING C D. Improving coreference resolution by learning entity-level distributed representations[EB/OL].[2019-05-03]. https://arxiv.org/pdf/1606.01323.pdf. [56] MIKOLOV T, KARAFIAT M, BURGET L, et al. Recurrent neural network based language model[C]//Conference of the International Speech Communication Association. 2010:1045-1048. [57] PETERS M E, NEUMANN M, LYYER M, et al. Deep contextualized word representations[C]//North American Chapter of the Association for Computational Linguistics. 2018:2227-2237. [58] LEE K, HE L H, ZETTLEMOYER L. Higher-order coreference resolution with coarse-to-fine inference[C]//North American Chapter of the Association for Computational Linguistics. 2018:687-692. [59] LAPPIN S, SHALOM H J. An algorithm for pronominal anaphora resolution[J]. Computational Linguistics, 1994, 20(4):535-561. [60] POESIO M, STEVENSON R, EUGENIO B D, et al. Centering:A parametric theory and its instantiations[J]. Computational Linguistics, 2004, 30(3):309-363. [61] NG V, CARDIE C. Improving machine learning approaches to coreference resolution[C]//Meeting of the Association of Computational Linguistics. 2002:104-111. [62] PONZETTO S P, STRUBE M. Exploiting semantic role labeling, WordNet and Wikipedia for coreference resolution[C]//Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL. 2006:192-199. [63] DENIS P, BALDRIDGE J. Specialized models and ranking for coreference resolution[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. 2008:660-669. [64] YANG X, ZHOU G, SU J, et al. Coreference resolution using competitive learning approach[C]//Proceedings of the Association of Computational Linguistics. 2003:176-183. [65] YANG X F, SU J, LANG J, et al. An entity-mention model for coreference resolution with inductive logic programming[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2008:843-851. [66] RAHMAN A, NG V. Narrowing the modeling gap:A cluster-ranking approach to coreference resolution[J]. Journal of Artificial Intelligence Research, 2011, 40:469-521. [67] NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Phys Rev E, 2004, 69(2):026113. [68] BLUM A, MITCHELL T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the 11th Annual Conference on Learning Theory. 1998:92-100. [69] GANCHEV K, GRACA J, GILLENWATER J. Posterior regularization for structured latent variable models[J]. Journal of Machine Learning Research, 2010, 11(1):2001-2049. [70] MOOSAVI N S, STRUBE M. Search space pruning:A simple solution for better coreference resolvers[C]//Proceedings of NAACL-HLT 2016. Association for Computational Linguistics, 2016:1005-1011. [71] WISEMAN S, RUSH A M, SHIEBER S M, et al. Learning anaphoricity and antecedent ranking features for coreference resolution[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics. 2015:1416-1426. [72] MA C, DOPPA J R, ORR J W, et al. Prune-and-score:Learning for greedy coreference resolution[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. 2014. [73] SUCHANEK F, KASNECI G, WEIKUM G. YAGO:A core of semantic knowledge unifying wordnet and Wikipedia[C]//Proceedings of the World Wide Web Conference. 2007:697-706. [74] BAKER C F, FILLMORE C J, LOWE J B. The Berkeley FrameNet project[C]//Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and the 17th International Conference on Computational Linguistics. 1998:86-90. [75] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL].[2019-05-10]. https://arxiv.org/pdf/1301.3781.pdf. [76] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9:1735-1780. [77] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL].[2019-06-02]. https://arxiv.org/pdf/1409.0473.pdf. [78] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436. [79] CLARK K, MANNING C D. Entity-centric coreference resolution with model stacking[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics. 2015:1405-1415. [80] HINTON G, TIELEMAN T. Lecture 6.5-RmsProp:Divide the gradient by a running average of its recent magnitude[J]. COURSERA:Neural Networks for Machine Learning, 2012, 4:26-30. [81] HINTON G, SRIVASTAVA N, KRIZHEVSKY I, et al. Improving neural networks by preventing coadaptation of feature detectors[EB/OL].[2019-06-20]. https://arxiv.org/pdf/1207.0580.pdf. [82] WILLIAMS R J. Simple statistical gradient-following algorithms for connectionist reinforcement learning[J]. Machine Learning, 1992, 8(3/4):229-256. [83] JI Y F, TAN C H, MARTSCHAT S, et al. Dynamic entity representations in neural language models[EB/OL].[2019-06-10]. https://arxiv.org/pdf/1708.00781.pdf. [84] PENNINGTON J, SOCHER R, MANNING C D. GloVe:Global vectors for word representation[C]//Conference on Empirical Methods in Natural Language Processing. 2014:1532-1543. [85] TURIAN J, RATINOV L, BENGIO Y. Word representations:A simple and general method for semi-supervised learning[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. 2010:384-394. [86] GRISHMAN R, SUNDHEIM B. Message understanding conference-6:A brief history[C]//Proceedings of the 16th Conference on Computational linguistics. 1996:466-471. [87] NIST, US. The ACE 2003 Evaluation Plan V[R]. US National Institute for Standards and Technology (NIST), 2003. [88] RECASENS M, MARQUEZ L, SAPENA E, et al. SemEval-2010 Task 1 OntoNotes English:Coreference Resolution in Multiple Languages[M]. Philadelphia:Linguistic Data Consortium, 2011. [89] PRADHAN S S, RAMSHAW L, MARCUS M, et al. CoNLL-2011 shared task:Modeling unrestricted coreference in OntoNotes[C]//Proceedings of the Shared Task of the 15th Conference on Computational Natural Language Learning. 2011:1-27 [90] PRADHAN S, MOSCHITTI A, XUE N W, et al. CoNLL-2012 shared task:Modeling multilingual unrestricted coreference in OntoNotes[C]//Proceedings of the Shared Task of the 16th Conference on Computational Natural Language Learning. 2012:1-40. [91] VILAIN M, BURGER J, ABERDEEN J, et al. A model-theoretic coreference scoring scheme[C]//Proceedings of the 6th Conference on Message Understanding. 1995:45-52. [92] BAGGA A, BALDWIN B. Algorithms for scoring coreference chains[C]//Proceedings of the Linguistic Coreference Workshop at the First International Conference on Language Resources and Evaluation. 1998:563-566. [93] LUO X. On coreference resolution performance metrics[C]//Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing. 2005:25-32. [94] RECASENS M, HOVY E. BLANC:Implementing the rand index for coreference evaluation[J]. Natural Language Engineering, 2011, 17(4):485-510. [95] LUO X, PRADHAN S, RECASENS M, et al. An extension of BLANC to system mentions[C]//Meeting of the Association for Computational Linguistics. 2014:24. [96] MOOSAVI N S, STRUBE M. Which coreference evaluation metric do you trust?A proposal for a link-based entity aware metric[C]//Meeting of the Association for Computational Linguistics. 2016:7-12. [97] KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2(1/2):83-97. [98] MUNKRES J. Algorithms for the assignment and transportation problems[J]. Journal of the Society for Industrial&Applied Mathematics, 1957, 5(1):32-38. [99] PENG H R, KHASHABI D, ROTH D. Solving hard coreference problems[EB/OL].[2019-05-1]. https://arxiv.org/pdf/1907.05524.pdf. [100] ZHOU Z H. A brief introduction to weakly supervised learning[J]. National Science Review, 2017, 5(1):44-53. [101] LEE D H. Pseudo-Label:The simple and efficient semi-supervised learning method for deep neural networks[C]//International Conference on Machine Learning. 2013. [102] RASMUS A, VALPOLA H, HONKALA M, et al. Semi-supervised learning with ladder networks[J]. Computer Science, 2015:1-9. [103] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529:484-489. [104] MA S, SUN X, LIN J Y, et al. A hierarchical end-to-end model for jointly improving text summarization and sentiment classification[C]//International Joint Conferencces on Artificial Intelligence. 2018. [105] CHO K, VAN MERRENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoderdecoder for statistical machine translation[C]//Conference on Empirical Methods in Natural Language Processing. 2014:1724-1734. |
[1] | 徐秋荣, 朱鹏, 罗轶凤, 董启文. 金融领域中文命名实体识别研究进展[J]. 华东师范大学学报(自然科学版), 2021, 2021(5): 1-13. |
[2] | 刘波, 白晓东, 张更新, 沈俊, 谢继东, 赵来定, 洪涛. 深度学习在认知无线电中的应用研究综述[J]. 华东师范大学学报(自然科学版), 2021, 2021(1): 36-52. |
[3] | 张旭, 黄定江. 基于深度学习的铝材表面缺陷检测[J]. 华东师范大学学报(自然科学版), 2020, 2020(6): 105-114. |
[4] | 穆肇南, 刘梦珠, 孙界平, 王成. 基于演化算法的唐诗自动生成系统研究[J]. 华东师范大学学报(自然科学版), 2020, 2020(6): 129-139. |
[5] | 韩程程, 李磊, 刘婷婷, 高明. 语义文本相似度计算方法[J]. 华东师范大学学报(自然科学版), 2020, 2020(5): 95-112. |
[6] | 王嘉宁, 何怡, 朱仁煜, 刘婷婷, 高明. 基于远程监督的关系抽取技术[J]. 华东师范大学学报(自然科学版), 2020, 2020(5): 113-130. |
[7] | 郭晓哲, 彭敦陆, 张亚彤, 彭学桂. GRS: 一种面向电商领域智能客服的生成-检索式对话模型[J]. 华东师范大学学报(自然科学版), 2020, 2020(5): 156-166. |
[8] | 刘恒宇, 张天成, 武培文, 于戈. 知识追踪综述[J]. 华东师范大学学报(自然科学版), 2019, 2019(5): 1-15. |
[9] | 杨康, 黄定江, 高明. 面向自动问答的机器阅读理解综述[J]. 华东师范大学学报(自然科学版), 2019, 2019(5): 36-52. |
[10] | 叶健, 赵慧. 基于大规模弹幕数据监听和情感分类的舆情分析模型[J]. 华东师范大学学报(自然科学版), 2019, 2019(3): 86-100. |
[11] | 余若男, 黄定江, 董启文. 基于深度学习的场景文字检测研究进展[J]. 华东师范大学学报(自然科学版), 2018, 2018(5): 1-16. |
[12] | 袁培森, 张勇, 李美玲, 顾兴健. 基于深度哈希学习的商标图像检索研究[J]. 华东师范大学学报(自然科学版), 2018, 2018(5): 172-182. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||