[1] YUDELSON M V, KOEDINGER K R, GORDON G J. Individualized Bayesian knowledge tracing models[C]//Artificial Intelligence in Education. Springer Berlin Heidelberg, 2013. [2] SCHUSTER M, PALIWAL K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11):2673-2681. [3] PIECH C, BASSEN J, HUANG J, et al. Deep knowledge tracing[C]//NIPS, 2015:505-513. [4] DIBELLO L, ROUSSOS L, STOUT W. 31a review of cognitively diagnostic assessment and a summary of psychometric models[J]. Handbook of Statistics, 2006, 26(12):979-1030. [5] EMBRETSON S E, REISE S P. Item response theory[M].[S.l.]:Psychology Press, 2013. [6] TORRE D L. DINA model and parameter estimation:A didactic[J]. Journal of Educational and Behavioral Statistics, 2008, 34(1):115-130. [7] WU R, LIU Q, LIU Y, et al. Cognitive modelling for predicting examinee performance[C]//International Conference on Artificial Intelligence. AAAI Press, 2015. [8] THAINGHE N, HORVATH T, SCHMIDTTHIEME L, et al. Factorization models for forecasting student performance[C]//Educational Data Mining, 2011:11-20. [9] XIONG L, CHEN X, HUANG T K, et al. Temporal collaborative filtering with Bayesian probabilistic tensor factorization[C]//Proceedings of the 2010 SIAM International Conference on Data Mining, 2010:211-222 [10] SU Y, LIU Q, LIU Q, et al. Exercise-enhanced sequential modeling for student performance prediction[C]//AAAI, 2018:2435-2443. [11] CHEN Y, LIU Q, HUANG Z, et al. Tracking knowledge proficiency of students with educational priors[C]//CIKM. ACM, 2017:989-998. [12] KINGMA D, BA J. Adam:A method for stochastic optimization[C]//International Conference on Learning Representations, 2015. [13] SHI Y, PENG Z, WANG H. Modeling student learning styles in MOOCs[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. ACM, 2017:979-988. [14] GRAVES A, MOHAMED A, HINTON G E. Speech recognition with deep recurrent neural networks[C]//ICASSP. IEEE, 2013:6645-6649. [15] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet Classification with Deep Convolutional Neural Networks[C]//NIPS. Curran Associates Inc, 2012. [16] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Advances in Neural Information Processing Systems, 2013. [17] HUANG Z, LIU Q, CHEN E, et al. Question difficulty prediction for reading problems in standard tests[C]//National Conference on Artificial Intelligence, 2017:1352-1359. [18] ZHANG J, SHI X, KING I, et al. Dynamic key-value memory networks for knowledge tracing[C]//The Web Conference, ACM, 2017:765-774. [19] CHEN P, LU Y, ZHENG V W, et al. Prerequisite-driven deep knowledge tracing[C]//IEEE Computer Society. ICDM, 2018:39-48. [20] DE BAKER R S J, CORBETT A T, ALEVEN V. More accurate student modeling through contextual estimation of slip and guess probabilities in Bayesian knowledge tracing[C]//Proceedings of the 9th international conference on Intelligent Tutoring Systems. Springer-Verlag, 1970. [21] PARDOS Z A, HEFFERNAN N T. KT-IDEM:Introducing item difficulty to the knowledge tracing model[C]//International Conference on User Modeling Adaptation and Personalization, 2011:243-254. [22] YUDELSON M, KOEDINGER K R, GORDON G J, et al. Individualized Bayesian knowledge tracing models[C]//Artificial Intelligence in Education, 2013:171-180. [23] MNIH A, SALAKHUTDINOV R. Probabilistic matrix factorization[C]//Neural Information Processing Systems, 2007:1257-1264. [24] CORBETT A T, ANDERSON J R. Knowledge tracing:Modeling the acquisition of procedural knowledge[J]. User Modeling and User-Adapted Interaction, 1994, 4(4):253-278. [25] PARDOS Z, HEFFERNAN N, RUIZ C, et al. The composition effect:Conjuntive or compensatory?an analysis of multi-skill math questions in ITS[C]//Educational Data Mining, 2008:147-156. [26] HASTINGS W K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications[J]. Biometrika, 1970, 57(1):97-109. [27] CAMILLI, G. Teacher's Corner:Origin of the scaling constant d=1.7 in item response theory[J]. Journal of Educational Statistics, 1994:19(3), 293-295. [28] RAJU N S, SLINDE J. ISSUES IN ITEM BANKING[J]. Journal of Educational Measurement, 1984, 21(4):415-417. [29] TANG J, GAO H, HU X, et al. Exploiting homophily effect for trust prediction[C]//Proceedings of the sixth ACM international conference on Web search and data mining. ACM, 2013:53-62. [30] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. |