华东师范大学学报(自然科学版) ›› 2023, Vol. 2023 ›› Issue (1): 114-128.doi: 10.3969/j.issn.1000-5641.2023.01.012
• 绿色催化反应和技术 • 上一篇
收稿日期:
2022-06-29
接受日期:
2022-09-19
出版日期:
2023-01-25
发布日期:
2023-01-07
通讯作者:
李晓红
E-mail:xhli@chem.ecnu.edu.cn
基金资助:
Mengnan LI, Huiyue XIN, Peng WU, Xiaohong LI*()
Received:
2022-06-29
Accepted:
2022-09-19
Online:
2023-01-25
Published:
2023-01-07
Contact:
Xiaohong LI
E-mail:xhli@chem.ecnu.edu.cn
摘要:
肉桂醛作为一种典型的α, β-不饱和醛, 其选择加氢常被用作模型反应来研究催化剂的构效关系. 然而, 如何获得兼具高活性及高选择性的催化剂具有很大的挑战. 铂基催化剂由于具有较高的活性常被用作肉桂醛选择加氢的催化剂, 但是, 传统方法制备的负载型单金属铂基催化剂, 无论是对C=C双键加氢还是C=O双键选择性均不高. 近年来, 研究人员从电子效应、协同效应以及空间效应等出发, 设计合成了一系列高性能负载型铂基催化剂用于肉桂醛的选择加氢. 本文将对近3年负载型铂基催化剂在肉桂醛选择加氢中的进展进行归纳和总结, 并对催化剂的构效关系进行分析和梳理, 希望为进一步合理设计高催化性能的铂基催化剂提供一些借鉴.
中图分类号:
李梦楠, 信惠跃, 吴鹏, 李晓红. 负载型铂基催化剂在肉桂醛选择加氢中的研究进展[J]. 华东师范大学学报(自然科学版), 2023, 2023(1): 114-128.
Mengnan LI, Huiyue XIN, Peng WU, Xiaohong LI. Progress in supported Pt-based catalysts for the liquid-phase selective hydrogenation of cinnamaldehyde[J]. Journal of East China Normal University(Natural Science), 2023, 2023(1): 114-128.
表1
文中部分催化剂应用于肉桂醛选择加氢反应的催化性能数据"
催化剂 | 反应温度/°C | 氢压/MPa | 反应时间/h | 转化率/% | 肉桂醇选择性/% | 参考文献 |
5cCo2cPt/Al2O3 | 80 | 1.0 | 9.0 | 95 | 81 | [ |
Pt-Ni/C | 80 | 5.0 | 1.0 | 100 | 63 | [ |
Pt-Cu/C-reduced | 80 | 5.0 | 1.0 | 100 | 65 | [ |
Pt/SiO2 | 76 | 2.0 | 4.9 | 99 | 80 | [ |
1%Pt/CZ-DPU | 25 | 0.1 | 2.0 | 89 | 81 | [ |
1Pt/Ce-La | 100 | 3.0 | 8.0 | 89 | 50 | [ |
PtCo/N-CNT | 70 | 2.0 | 1.5 | 100 | 88 | [ |
C@PtGa/MgAlGaOx | 70 | 3.0 | 2.0 | 88 | 92 | [ |
Pt/SiC-C | 25 | 2.0 | 1.0 | 85 | 80 | [ |
Pt/YCo0.3Fe0.7O3 | 90 | 2.0 | 0.5 | 99 | 95 | [ |
Pt/Co0.5Fe0.5Al2O4+δ | 90 | 2.0 | 0.5 | 94 | 95 | [ |
PtCo/CoBOx | 25 | 1.0 | 9.0 | 98 | 95 | [ |
Pt-Fe/UiO-66 | 100 | 2.0 | 2.0 | 100 | 94 | [ |
Pt3Sn/CNTs | 80 | 2.0 | 3.0 | 99 | 53 | [ |
3%Pt3%Co/MIL-101(Cr) | 60 | 1.0 | 3.0 | 95 | 91 | [ |
Pt3Sn/SnO2/rGO | 70 | 2.0 | 0.5 | 94 | 93 | [ |
Pt/U-720(SI) | 50 | 4.0 | 3.0 | 97 | 93 | [ |
PtFe0.75/CeO2 | 80 | 1.0 | 2.0 | 95 | 90 | [ |
Ultrathin Pt/CoAl-LDH | 70 | 3.0 | 1.0 | 94 | 92 | [ |
1.61%Pt@MAF-6 | 80 | 3.0 | 48 | 95 | 94 | [ |
Pt@S-1 | 60 | 1.0 | 4.0 | 100 | 99 | [ |
Pt@3D-NHPC-H2O2(1.6nm) | 60 | 2.0 | 2.0 | 97 | 96 | [ |
1.0 wt%Pt/Co-ASP | 60 | 2.0 | 2.0 | 90 | 89 | [ |
Pt@CeO2 | 70 | 2.0 | 6.0 | 63 | 70 | [ |
Pt@Fe-CeO2 | 70 | 2.0 | 6.0 | 97 | 89 | [ |
Void@UiO-66-NH2@Pt@UiO-66-NO2 | 160 | 2.0 | 1.0 | 98 | 95 | [ |
Fe2O3@SiO2@TiO2-5%Pt | 100 | 2.0 | 1.5 | 98 | 95 | [ |
Pt@HP-UiO-66-0.8 | 70 | 2.0 | 9.0 | 85 | 76 | [ |
PtFe0.25/15AS | 90 | 2.0 | 1.0 | 77 | 77 | [ |
PtFe0.25/15TS | 90 | 2.0 | 0.5 | 68 | 86 | [ |
PtSn/HPZSM-5 | 90 | 2.0 | 1.0 | 100 | 82 | [ |
PtFe/HPZSM-5 | 90 | 2.0 | 1.0 | 98 | 88 | [ |
1 | GUTIÉRREZ V, NADOR F, RADIVOY G, et al. Highly selective copper nanoparticles for the hydrogenation of α, β-unsaturated aldehydes in liquid phase. Applied Catalysis A: General, 2013, 464/465, 109- 115. |
2 | BACHILLER-BAEZA B, RODRÍGUEZ-RAMOS I, GUERRERO-RUIZ A. Influence of Mg and Ce addition to ruthenium based catalysts used in the selective hydrogenation of α, β-unsaturated aldehydes. Applied Catalysis A: General, 2001, 205 (1): 227- 237. |
3 | LI Y, ZHU P F, ZHOU R X. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol with carbon nanotubes supported Pt-Co catalysts. Applied Surface Science, 2008, 254 (9): 2609- 2614. |
4 | MOHR C, CLAUS P. Hydrogenation properties of supported nanosized gold particles. Science Progress, 2001, 84 (4): 311- 334. |
5 | ZHENG R, POROSOFF M D, WEINER J L, et al. Controlling hydrogenation of C=O and C=C bonds in cinnamaldehyde using silica supported Co-Pt and Cu-Pt bimetallic catalysts. Applied Catalysis A: General, 2012, 419/420, 126- 132. |
6 | LEPRÓ X, TERRÉS E, VEGA-CANTÚ Y, et al. Efficient anchorage of Pt clusters on N-doped carbon nanotubes and their catalytic activity. Chemical Physics Letters, 2008, 463 (1): 124- 129. |
7 | LIU Z, YANG Y, MI J, et al. Synthesis of copper-containing ordered mesoporous carbons for selective hydrogenation of cinnamaldehyde. Catalysis Communications, 2012, 21, 58- 62. |
8 | NI X, ZHANG B, LI C, et al. Microwave-assisted green synthesis of uniform Ru nanoparticles supported on non-functional carbon nanotubes for cinnamaldehyde hydrogenation. Catalysis Communications, 2012, 24, 65- 69. |
9 | ROJAS H, DÍAZ G, MARTÍNEZ J J, et al. Hydrogenation of α, β-unsaturated carbonyl compounds over Au and Ir supported on SiO2. Journal of Molecular Catalysis A: Chemical, 2012, 363/364, 122- 128. |
10 | DURNDELL L J, PARLETT C M, HONDOW N S, et al. Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation. Scientific Reports, 2015, 5, 9425. |
11 | PRASHAR A K, MAYADEVI S, NANDINI DEVI R. Effect of particle size on selective hydrogenation of cinnamaldehyde by Pt encapsulated in mesoporous silica. Catalysis Communications, 2012, 28, 42- 46. |
12 | TSANG S C, CAILUO N, ODURO W, et al. Engineering preformed cobalt-doped platinum nanocatalysts for ultraselective hydrogenation. ACS Nano, 2008, 2 (12): 2547- 2553. |
13 | KATO S, OHYAMA J, MACHIDA M, et al. Gas-phase synthesis of morphology-controlled Pt nanoparticles and their impact on cinnamaldehyde hydrogenation. Catalysis Science & Technology, 2019, 9 (9): 2097- 2102. |
14 | GUTIERREZ V, ALVAREZ M, VOLPE M A. Liquid phase selective hydrogenation of cinnamaldehyde over copper supported catalysts. Applied Catalysis A: General, 2012, 413/414, 358- 365. |
15 | HANDJANI S, MARCEAU E, BLANCHARD J, et al. Influence of the support composition and acidity on the catalytic properties of mesoporous SBA-15, Al-SBA-15, and Al2O3-supported Pt catalysts for cinnamaldehyde hydrogenation . Journal of Catalysis, 2011, 282 (1): 228- 236. |
16 | GUO Z, CHEN Y, LI L, et al. Carbon nanotube-supported Pt-based bimetallic catalysts prepared by a microwave-assisted polyol reduction method and their catalytic applications in the selective hydrogenation. Journal of Catalysis, 2010, 276 (2): 314- 326. |
17 | HIDALGO-CARRILLO J, ARAMENDÍA M A, MARINAS A, et al. Support and solvent effects on the liquid-phase chemoselective hydrogenation of crotonaldehyde over Pt catalysts. Applied Catalysis A: General, 2010, 385 (1): 190- 200. |
18 | XIANG X, HE W, XIE L, et al. A mild solution chemistry method to synthesize hydrotalcite-supported platinum nanocrystals for selective hydrogenation of cinnamaldehyde in neat water. Catalysis Science & Technology, 2013, 3 (10): 2819- 2827. |
19 | GAO X, DAI H, PENG L, et al. Effect of hydrotalcites interlayer water on Pt-catalyzed aqueous-phase selective hydrogenation of cinnamaldehyde. ACS Applied Materials & Interfaces, 2020, 12 (2): 2516- 2524. |
20 | PIQUERAS C M, PUCCIA V, VEGA D A, et al. Selective hydrogenation of cinnamaldehyde in supercritical CO2 over Me-CeO2 (Me =Cu, Pt, Au): Insight of the role of Me-Ce interaction . Applied Catalysis B: Environmental, 2016, 185, 265- 271. |
21 | WENG Z, ZAERA F. Sub-monolayer control of mixed-oxide support composition in catalysts via atomic layer deposition: Selective hydrogenation of cinnamaldehyde promoted by (SiO2-ALD)-Pt/Al2O3. ACS Catalysis, 2018, 8 (9): 8513- 8524. |
22 | WU Q, ZHANG C, ARAI M, et al. Pt/TiH2 catalyst for ionic hydrogenation via stored hydrides in the presence of gaseous H2. ACS Catalysis, 2019, 9 (7): 6425- 6434. |
23 | YUAN Y, YAO S, WANG M, et al. Recent progress in chemoselective hydrogenation of α, β-unsaturated aldehyde to unsaturated alcohol over nanomaterials. Current Organic Chemistry, 2013, 17 (4): 400- 413. |
24 | LAN X, WANG T. Highly selective catalysts for the hydrogenation of unsaturated aldehydes: A review. ACS Catalysis, 2020, 10 (4): 2764- 2790. |
25 | WANG X, LIANG X, GENG P, et al. Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts. ACS Catalysis, 2020, 10 (4): 2395- 2412. |
26 | CHEN J, YIU Y M, WANG Z, et al. Elucidating the many-body effect and anomalous Pt and Ni core level shifts in X-ray photoelectron spectroscopy of Pt-Ni alloys. The Journal of Physical Chemistry C, 2020, 124 (4): 2313- 2318. |
27 | DAI L X, ZHU W, LIN M, et al. Self-supported composites of thin Pt-Sn crosslinked nanowires for the highly chemoselective hydrogenation of cinnamaldehyde under ambient conditions. Inorganic Chemistry Frontiers, 2015, 2 (10): 949- 956. |
28 | LIU Z, TAN X, LI J, et al. Easy synthesis of bimetal PtFe-containing ordered mesoporous carbons and their use as catalysts for selective cinnamaldehyde hydrogenation. New Journal of Chemistry, 2013, 37 (5): 1350- 1357. |
29 | WANG X, HE Y, LIU Y, et al. Atomic layer deposited Pt-Co bimetallic catalysts for selective hydrogenation of α, β-unsaturated aldehydes to unsaturated alcohols. Journal of Catalysis, 2018, 366, 61- 69. |
30 | NERI G, ARRIGO I, CORIGLIANO F, et al. Selective hydrogenation of cinnamaldehyde on Pt and Pt-Fe catalysts supported on zeolite P. Catalysis Letters, 2011, 141, 1590- 1597. |
31 | SHI Y S, YUAN Z F, WEI Q, et al. Pt-FeOx/SiO2 catalysts prepared by galvanic displacement show high selectivity for cinnamyl alcohol production in the chemoselective hydrogenation of cinnamaldehyde . Catalysis Science & Technology, 2016, 6 (19): 7033- 7037. |
32 | TIAN Z B, LI Q Y, HOU J Y, et al. Highly selective hydrogenation of α, β-unsaturated aldehydes by Pt catalysts supported on Fe-based layered double hydroxides and derived mixed metal oxides. Catalysis Science & Technology, 2016, 6 (3): 703- 707. |
33 | ZHANG Y W, WEI S P, LIN Y J, et al. Dispersing metallic platinum on green rust enables effective and selective hydrogenation of carbonyl group in cinnamaldehyde. ACS Omega, 2018, 3 (10): 12778- 12787. |
34 | RONG Z, SUN Z, WANG Y, et al. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over graphene supported Pt-Co bimetallic catalysts. Catalysis Letters, 2014, 144 (6): 980- 986. |
35 | WANG H, BAI S, PI Y, et al. A strongly coupled ultrasmall Pt3Co nanoparticle-ultrathin Co(OH)2 nanosheet architecture enhances selective hydrogenation of α, β-unsaturated aldehydes . ACS Catalysis, 2019, 9 (1): 154- 159. |
36 | YANG L X, WU H Q, GAO H Y, et al. Hybrid catalyst of a metal-organic framework, metal nanoparticles, and oxide that enables strong steric constraint and metal-support interaction for the highly effective and selective hydrogenation of cinnamaldehyde. Inorganic Chemistry, 2018, 57 (20): 12461- 12465. |
37 | ZHENG Q, WANG D, YUAN F, et al. An effective Co-promoted platinum of Co-Pt/SBA-15 catalyst for selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. Catalysis Letters, 2016, 146 (8): 1535- 1543. |
38 | RONG H, NIU Z, ZHAO Y, et al. Structure evolution and associated catalytic properties of Pt-Sn bimetallic nanoparticles. Chemistry A European Journal, 2015, 21 (34): 12034- 12041. |
39 | ZHU M, HUANG B, SHAO Q, et al. Highly networked platinum-tin nanowires as highly active and selective catalysts towards the semihydrogenation of unsaturated aldehydes. ChemCatChem, 2018, 10 (15): 3214- 3218. |
40 | BAI S, BU L, SHAO Q, et al. Multicomponent Pt-based zigzag nanowires as selectivity controllers for selective hydrogenation reactions. Journal of the American Chemical Society, 2018, 140 (27): 8384- 8387. |
41 | WANG K, HE X, WANG J C, et al. Highly stable Pt-Co bimetallic catalysts prepared by atomic layer deposition for selective hydrogenation of cinnamaldehyde. Nanotechnology, 2022, 33 (21): 215602. |
42 | MENG Y, XIA S, ZHOU X, et al. Mechanism of selective hydrogenation of cinnamaldehyde on Ni-Pt(111) with different structures: A comparative study. Chemical Physics Letters, 2020, 740, 137049. |
43 | WANG J, JIN M, SUN Y, et al. Pt-modified MoO3 catalyst for the electrochemically selective C=O hydrogenation of cinnamaldehyde . Chemical Communications, 2022, 58 (47): 6721- 6724. |
44 | PEI A, RUAN L, LIAO J, et al. Platinum island-on-copper-nickel alloy nanoparticle/carbon trimetallic nanocatalyst for selective hydrogenation of cinnamaldehyde. Catalysis Letters, 2020, 151 (2): 559- 572. |
45 | ZHANG W B, XIN H Y, ZHANG Y Q, et al. Bimetallic Pt-Fe catalysts supported on mesoporous TS-1 microspheres for the liquid-phase selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2021, 395, 375- 386. |
46 | TAO R, SHAN B Q, SUN H D, et al. Surface molecule manipulated Pt/TiO2 catalysts for selective hydrogenation of cinnamaldehyde . The Journal of Physical Chemistry C, 2021, 125 (24): 13304- 13312. |
47 | SHAKOR Z M, ABDULRAZAK A A, SHUHAIB A A. Optimization of process variables for hydrogenation of cinnamaldehyde to cinnamyl alcohol over a Pt/SiO2 catalyst using response surface methodology . Chemical Engineering Communications, 2021, 209 (6): 827- 843. |
48 | VIKANOVA K, REDINA E, KAPUSTIN G, et al. Template-free one-step synthesis of micro-mesoporous CeO2-ZrO2 mixed oxides with a high surface area for selective hydrogenation . Ceramics International, 2020, 46 (9): 13980- 13988. |
49 | WANG F, YU Z, WEI X, et al. Pt/Ce-La nanocomposite for hydrogenation promoted by a synergistic effect of support with redox and basic property [J/OL]. Catalysis Letters, (2022-02-09)[2022-06-10]. https://doi.org/10.1007/s10562-022-03934-3. |
50 | MACHADO B F, GOMES H T, SERP P, et al. Liquid-phase hydrogenation of unsaturated aldehydes: Enhancing selectivity of multiwalled carbon nanotube-supported catalysts by thermal activation. ChemCatChem, 2010, 2 (2): 190- 197. |
51 | NONGWE I, RAVAT V, MEIJBOOM R, et al. Pt supported nitrogen doped hollow carbon spheres for the catalysed reduction of cinnamaldehyde. Applied Catalysis A: General, 2016, 517, 30- 38. |
52 | HAN Q, LIU Y, WANG D, et al. Effect of carbon nanosheets with different graphitization degrees as a support of noble metals on selective hydrogenation of cinnamaldehyde. RSC Advances, 2016, 6 (100): 98356- 98364. |
53 | TOEBES M L, ZHANG Y, HÁJEK J, et al. Support effects in the hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts: Characterization and catalysis. Journal of Catalysis, 2004, 226 (1): 215- 225. |
54 | TIAN Z B, LIU C, LI Q Y, et al. Nitrogen and oxygen-functionalized carbon nanotubes supported Pt-based catalyst for the selective hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 2015, 506, 134- 142. |
55 | HUI T L, MIAO C L, FENG J T, et al. Atmosphere induced amorphous and permeable carbon layer encapsulating PtGa catalyst for selective cinnamaldehyde hydrogenation. Journal of Catalysis, 2020, 389, 229- 240. |
56 | YAO R H, LI J R, WU P, et al. The superior performance of a Pt catalyst supported on nanoporous SiC-C composites for liquid-phase selective hydrogenation of cinnamaldehyde. RSC Advances, 2016, 6 (84): 81211- 81218. |
57 | XUE Y J, XIN H Y, XIE W H, et al. Pt nanoparticles supported on YCoxFe1−xO3 perovskite oxides: highly efficient catalysts for liquid-phase hydrogenation of cinnamaldehyde . Chemical Communications, 2019, 55 (23): 3363- 3366. |
58 | XIN H Y, XUE Y J, ZHANG W B, et al. CoxFe1-xAl2O4+δ composite oxides supported Pt nanoparticles as efficient and recyclable catalysts for the liquid-phase selective hydrogenation of cinnamaldehyde . Journal of Catalysis, 2019, 380, 254- 266. |
59 | ZHANG S, XIA Z M, ZHANG M K, et al. Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature. Applied Catalysis B: Environmental, 2021, 297 (15): 120418. |
60 | NING L, ZHANG M, LIAO S, et al. Differentiation of Pt-Fe and Pt-Ni3 surface catalytic mechanisms towards contrasting products in chemoselective hydrogenation of α, β-unsaturated aldehydes . ChemCatChem, 2020, 13 (2): 704- 711. |
61 | CHEN B, YANG X, ZENG X L, et al. Rational design of integrated nanocatalysts with hollow mesoporous transition metal silicates for chemoselective hydrogenation of cinnamaldehyde. Molecular Catalysis, 2020, 493, 111069. |
62 | XIN H Y, ZHANG W B, XIAO X X, et al. Selective hydrogenation of cinnamaldehyde with NixFe1-xAl2O4+δ composite oxides supported Pt catalysts: C=O versus C=C selectivity switch by varying the Ni/Fe molar ratios . Journal of Catalysis, 2021, 393, 126- 139. |
63 | CHEN X, CAO H, CHEN X Z, et al. Synthesis of intermetallic Pt-based catalysts by lithium naphthalenide-driven reduction for selective hydrogenation of cinnamaldehyde. ACS Applied Materials & Interfaces, 2020, 12 (16): 18551- 18561. |
64 | ZAHID M, LI J, ISMAIL A, et al. Platinum and cobalt intermetallic nanoparticles confined within MIL-101(Cr) for enhanced selective hydrogenation of the carbonyl bond in α, β-unsaturated aldehydes: Synergistic effects of electronically modified Pt sites and lewis acid sites. Catalysis Science & Technology, 2021, 11 (7): 2433- 2445. |
65 | SHI J, ZHANG M, DU W, et al. SnO2-isolated Pt3Sn alloy on reduced graphene oxide: An efficient catalyst for selective hydrogenation of C=O in unsaturated aldehydes . Catalysis Science & Technology, 2015, 5 (6): 3108- 3112. |
66 | BAVYKINA A, KOLOBOV N, KHAN I S, et al. Metal-organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives. Chemical Reviews, 2020, 120 (16): 8468- 8535. |
67 | BURU C T, FARHA O K. Strategies for incorporating catalytically active polyoxometalates in metal-organic frameworks for organic transformations. ACS Applied Materials & Interfaces, 2020, 12 (5): 5345- 5360. |
68 | JOHNSON B A, BEILER A M, MCCARTHY B D, et al. Transport phenomena: Challenges and opportunities for molecular catalysis in Metal-organic frameworks. Journal of the American Chemical Society, 2020, 142 (28): 11941- 11956. |
69 | GENG R, JIA H, XIE Y, et al. Influence of the defects on selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over UiO-66 supported Pt catalysts. Microporous and Mesoporous Materials, 2022, 338, 111968. |
70 | GONG X, SHI Q Q, ZHANG X Y, et al. Synergistic effects of PtFe/CeO2 catalysts afford high catalytic performance in selective hydrogenation of cinnamaldehyde [J/OL]. Journal of Rare Earths, (2022-02-20)[2022-06-10]. https://doi.org/10.1016/j.jre.2022.02.010. |
71 | MIAO C L, ZHANG F Y, CAI L Y, et al. Identification and insight into the role of ultrathin LDH-induced dual-interface sites for selective cinnamaldehyde hydrogenation. ChemCatChem, 2021, 13 (23): 4937- 4947. |
72 | XUE K Z, LAN X C, WANG J F, et al. Synthesis of Pt@MAF-6 as a steric effect catalyst for selective hydrogenation of cinnamaldehyde. Catalysis Letters, 2020, 150 (11): 3234- 3242. |
73 | YE H S, ZHAO H Y, JIANG Y Y, et al. Catalytic transfer hydrogenation of the C=O bond in unsaturated aldehydes over Pt nanoparticles embedded in porous UiO-66 nanoparticles. ACS Applied Nano Materials, 2020, 3 (12): 12260- 12268. |
74 | LIU C, ZHU P, WANG J S, et al. Geometrically embedding dispersive Pt nanoparticles within silicalite-1 framework for highly selective α, β-unsaturated aldehydes hydrogenation via oriented C=O adsorption configuration. Chemical Engineering Journal, 2022, 446, 137064. |
75 | YU H T, XU Y, HAVENER K, et al. Efficient catalysis using honeycomb-like N-doped porous carbon supported Pt nanoparticles for the hydrogenation of cinnamaldehyde in water. Molecular Catalysis, 2022, 525, 112343. |
76 | TANG Y, LI H K, CUI K C, et al. Chemoselective hydrogenation of cinnamaldehyde over amorphous coordination polymer supported Pt-Co bimetallic nanocatalyst. Chemical Physics Letters, 2022, 801, 139683. |
77 | WANG L, HAN R, MA Y, et al. Spatial location and microenvironment engineering of Pt-CeO2 nanoreactors for selective hydrogenation of cinnamaldehyde to cinnamyl alcohol . The Journal of Physical Chemistry C, 2021, 125 (41): 22603- 22610. |
78 | ZHANG B Z, LI M Y, LEI H J, et al. Combining shell confinement and outside decoration to boost the selectivity of Pt nanocatalysts in hollow-flower like Zr-MOFs double shell micro-reactor for hydrogenation cinnamaldehyde to unsaturated alcohol. Applied Surface Science, 2022, 599, 153899. |
79 | DINAMARCA R B, ESPINOZA-GONZÁLEZ R, CAMPOS C H, et al. Magnetic Pt single and double core-shell structures for the catalytic selective hydrogenation of cinnmaladehyde. Pure and Applied Chemistry, 2020, 92 (3): 413- 427. |
80 | GUO M Y, DU Y Z, ZHANG M W, et al. Breaking the activity-selectivity trade-off of Pt nanoparticles encapsulated in UiO-66 for hydrogenation by constructing suitable hierarchical structure. ACS Sustainable Chemistry & Engineering, 2022, 10 (23): 7485- 7499. |
81 | PAN H Y, LI J R, LU J Q, et al. Selective hydrogenation of cinnamaldehyde with PtFe /Al2O3@SBA-15 catalyst: Enhancement in activity and selectivity to unsaturated alcohol by Pt-FeO and Pt-Al2O3@SBA-15 interaction . Journal of Catalysis, 2017, 354, 24- 36. |
82 | XUE Y J, YAO R H, LI J R, et al. Efficient Pt-FeOx/TiO2@SBA-15 catalysts for selective hydrogenation of cinnamaldehyde to cinnamyl alcohol . Catalysis Science & Technology, 2017, 7 (24): 6112- 6123. |
83 | WANG G M, XIN H Y, WANG Q X, et al. Efficient liquid-phase hydrogenation of cinnamaldehyde to cinnamyl alcohol with a robust PtFe/HPZSM-5 catalyst. Journal of Catalysis, 2020, 382, 1- 12. |
84 | WANG Q X, WANG G M, XIN H Y, et al. Sn-doped Pt catalyst supported on hierarchical porous ZSM-5 for the liquid-phase hydrogenation of cinnamaldehyde. Catalysis Science & Technology, 2019, 9 (12): 3226- 3237. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||