华东师范大学学报(自然科学版) ›› 2023, Vol. 2023 ›› Issue (2): 168-182.doi: 10.3969/j.issn.1000-5641.2023.02.018
• 化学化工 • 上一篇
收稿日期:
2021-10-13
接受日期:
2022-03-24
出版日期:
2023-03-25
发布日期:
2023-03-23
作者简介:
杨 阳, 男, 博士研究生, 研究方向为铝的高级氧化、还原及其在净化水方面的应用. E-mail: 基金资助:
Yang YANG1(), Zhenyan DENG1, Xiaohan GUO1, Genwang MA1, Weizhuo GAI2
Received:
2021-10-13
Accepted:
2022-03-24
Online:
2023-03-25
Published:
2023-03-23
摘要:
金属铝(Al)因储量丰富且具有较低的氧化还原电位, 在Al-水制氢及水处理领域得到广泛研究, 而Al颗粒表面的致密氧化膜是影响Al还原活性的主要因素. 除了酸/碱溶解、合金化及机械球磨等常见的Al表面处理方法, 近年来出现的Al表面改性技术被认为是一种经济有效且工艺条件相对温和的Al表面活化方法. 本文通过综述Al表面改性方法在Al-水制氢及Al去除水中污染物方面的研究报道, 突出了该方法相比于其他Al表面处理方法所存在的优势及不足. 同时, 对Al表面改性技术在制氢及去除水中污染物中的应用进行了展望, 以期促进Al表面改性技术在制氢及水处理领域的研究进展.
中图分类号:
杨阳, 邓振炎, 郭晓晗, 麻根旺, 盖卫卓. 改性铝在制氢及去除水中污染物中的应用[J]. 华东师范大学学报(自然科学版), 2023, 2023(2): 168-182.
Yang YANG, Zhenyan DENG, Xiaohan GUO, Genwang MA, Weizhuo GAI. Surface-modified aluminum used for hydrogen generation and aqueous contaminant removal[J]. Journal of East China Normal University(Natural Science), 2023, 2023(2): 168-182.
表2
不同处理方法的铝粉体与水反应制氢"
处理方法 | 反应条件 | 产氢效率/% | 反应时间/h | 参考文献 |
Alkaline additive | 0.25 mol/L Na2SnO3, pH 12.0, 75℃, 1.01 × 105 Pa | 35 | ~ 0 | [ |
Alloys | 50 wt% Al-34 wt% Ga-11 wt% In-5 wt% Sn, 55℃, 1.01 × 105 Pa | 85 | ~ 0 | [ |
Ball-milled alloys | Al-5 wt% Li-5 wt% NaCl, 25℃, 1.01 × 105 Pa | 100 | 16.67 | [ |
Ball-milled Al/C | Al-23 wt% C-2 wt% NaCl, 65℃, 1.01 × 105 Pa | 86 | 5.83 | [ |
GMAPs | 30 wt% Al : 70 wt% γ-Al2O3, 25℃, 1.01 × 105 Pa | 28 | ~ 22 | [ |
Direct addition | 30 vol% γ-Al2O3, 25℃, 4 kPa | ~ 100 | ~ 20 | [ |
Direct addition | 30 vol% α-Al2O3, 25℃, 4 kPa | ~ 100 | ~ 38 | [ |
Direct addition | 30 vol% TiO2, 25℃, 4 kPa | ~ 100 | ~ 31 | [ |
Direct addition | 30 vol% Al(OH)3, 25℃, 4 kPa | ~ 100 | ~ 22 | [ |
表3
不同处理方法的Al粉体去除水溶液中的Cr(Ⅵ)离子"
处理方法 | 反应条件 | 去除效率/% | 反应时间/min | 参考文献 |
Acid washing | [Cr(Ⅵ)]0 = 20.0 mg/L, [Al]0 = 0.4 g/L, pH0 = 1.5 | 100 | 150 | [ |
Al deposited with Fe | [Cr(Ⅵ)]0 = 20.0 mg/L, [Fe/Al]0 = 6.0 g/L, Fe/Al mass ratio: 0.75 g, pH0 = 3.0 | 100 | 10 | [ |
GMAPs | [Cr(Ⅵ)]0 = 8 mg/L, [Al]0 = 4 g/L, near neutral pH, | 100 | 60 | [ |
Ball milling | 5.0 wt% NaCl (grinding aid), 300 r/min, 1.0 h, N2, [Cr(Ⅵ)]0 = 0.2 mmol/L, [Al]0 = 4 g/L, pH0 = 7.00 | 100 | 380 | [ |
Ball milling | Ethanol (grinding aid), 3.00 h, [Cr(Ⅵ)]0 = 20 mg/L, [Al]0 = 4 g/L, near neutral pH | 100 | 25 | [ |
表4
不同铝材料去除水溶液中的甲基橙/甲基蓝"
材料 | 反应条件 | 降解效率/% | 反应时间/h | 参考文献 |
GMAPs | Dosage 1 g/L, pH 5.9, C020 mg/L, T 45℃ | 100 | 1 (M-orange) | [ |
GMAPs | Dosage 1 g/L, pH 5.7, C020 mg/L,T 45℃ | 96 | 2.5 (M-blue) | [ |
Aluminum foam | pH 7.2, C020 mg/L, with ultrasound and direct electric current | 100 | 8 (M-orange) | [ |
Periphyton | Dosage 4 g/L, pH 7.0, C050 mg/L, T 30℃ | 70 | 168 (M-orange) | [ |
表5
不同材料去除水溶液中的溴酸根离子"
材料 | 用量/(g·L–1) | pH 值 | | 反应温度/°C | 去除效率/% | 反应时间/min | 参考文献 |
GMAPs | 2.0 | 5.7 | 16 | 35 | 100 | 30 | [ |
Acid-washed Fe | 25 | 6.0 ~ 6.5 | 5.0 | 20 | 100 | 30 | [ |
Acid-washed Zn | 5.0 | 3.0 | 10 | 20 | 100 | 60 | [ |
Acid-washed Al | 3.5 | 3.0 | 10 | 60 | 100 | 30 | [ |
Acid-washed Al + oxalic acid | 3.5 | 7.0 | 10 | 60 | 100 | 20 | [ |
1 | BOKARE A D, CHOI W Y. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes . Journal of Hazardous Materials, 2014, 275, 121- 135. |
2 | YANG S Y, ZHENG D, CHANG S Y, et al. Zero valent aluminum based oxidation/reduction technology applied in water treatment. Progress in Chemistry, 2016, 28 (5): 754- 762. |
3 | LIANG J, AZHAR U, MEN P, et al. Fluoropolymer/SiO2 encapsulated aluminum pigments for enhanced corrosion protection . Applied Surface Science, 2019, 487, 1000- 1007. |
4 | GAI W Z, ZHANG X H, SUN K X, et al. Hydrogen generation from Al-water reaction promoted by M-B/γ-Al2O3(M = Co, Ni) catalyst . International Journal of Hydrogen Energy, 2019, 44 (45): 24377- 24386. |
5 | GAI W Z, ZHANG X H, SUN K X, et al. Hydrogen generation from Al-water reaction catalyzed by Fe/AlOOH composite. Energy Science & Engineering, 2020, 8 (7): 2402- 2411. |
6 | YAVOR Y, GOROSHIN S, BERGTHORSON J M, et al. Enhanced hydrogen generation from aluminum-water reactions. International Journal of Hydrogen Energy, 2013, 38 (35): 14992- 15002. |
7 | SWAMY A K N, SHAFIROVICH E. Conversion of aluminum foil to powders that react and burn with water. Combustion and Flame, 2014, 161, 322- 331. |
8 | BELITSKUS D. Reaction of aluminum with sodium hydroxide solution as a source of hydrogen. Journal of the Electrochemical Society, 1970, 117, 1097- 1099. |
9 | PYUN S I, MOON S M. Corrosion mechanism of pure aluminium in aqueous alkaline solution. Journal of Solid State Electrochemistry, 2000, 5 (4): 267- 272. |
10 | ZHANG J S, KLASKY M, LETELLIER B C. The aluminum chemistry and corrosion in alkaline solutions. Journal of Nuclear Materials, 2009, 384 (2): 175- 189. |
11 | SOLER L, CANDELA A M, MACANAS J, et al. Hydrogen generation from water and aluminum promoted by sodium stannate. International Journal of Hydrogen Energy, 2010, 35 (3): 1038- 1048. |
12 | LIN K Y A, LIN C H. Simultaneous reductive and adsorptive removal of bromate from water using acid-washed zero-valent aluminum (ZVAl). Chemical Engineering Journal, 2016, 297, 19- 25. |
13 | BOKARE A D, CHOI W. Degradation of aqueous organic pollutants. Environmental Science & Technology, 2009, 43, 7130- 7135. |
14 | LIU W P, ZHANG H H, CAO B B, et al. Oxidative removal of bisphenol A using zero valent aluminum-acid system. Water Research, 2011, 45, 1872- 1878. |
15 | FU F L, HAN W J, CHENG Z H, et al. Removal of hexavalent chromium from wastewater by acid-washed zero-valent aluminum. Desalination and Water Treatment, 2016, 57 (1/2): 5592- 5600. |
16 | CHENG Z H, FU F L, PANG Y S, et al. Removal of phenol by acid-washed zero-valent aluminum in the presence of H2O2. Chemical Engineering Journal, 2015, 260, 284- 290. |
17 | ZIEBARTH J T, WOODALL J M, KRAMER R A. Liquid phase-enabled reaction of Al-Ga and Al-Ga-In-Sn alloys with water. International Journal of Hydrogen Energy, 2011, 36 (9): 5271- 5279. |
18 | WANG W, CHEN D M, YANG K. Investigation on microstructure and hydrogen generation performance of Al-rich alloys. International Journal of Hydrogen Energy, 2021, 35 (21): 12011- 12019. |
19 | CHEN X Y, ZHAO Z W, LIU X H. Hydrogen generation by the hydrolysis reaction of ball-milled aluminium-lithium alloys. Journal of Power Sources, 2014, 254, 345- 352. |
20 | CHENG Z H, FU F L, DIONYSIOU D D, et al. Adsorption, oxidation, and reduction behavior of arsenic in the removal of aqueous As(Ⅲ) by mesoporous Fe/Al bimetallic particles. Water Research, 2016, 96, 22- 31. |
21 | FU F L, CHENG Z H, DIONYSIOU D D, et al. Fe/Al bimetallic particles for the fast and highly efficient removal of Cr(Ⅵ) over a wide pH range: Performance and mechanism. Journal of Hazardous Materials, 2015, 298, 261- 269. |
22 | FAN M Q, SUN L X, XU F. Feasibility study of hydrogen production for micro fuel cell from activated Al-In mixture in water. Energy, 2010, 35 (3): 1333- 1337. |
23 | WANG C P, YANG T, LIU Y H. Hydrogen generation by the hydrolysis of magnesium-aluminum-iron material in aqueous solution. International Journal of Hydrogen Energy, 2014, 39 (21): 10843- 10852. |
24 | PREEZ S D P, BESSARABOV D G. Hydrogen generation of mechanochemically activated Al-Bi-In composites. International Journal of Hydrogen Energy, 2017, 42, 16589- 16602. |
25 | DREIZIN E L, SCHOENITZ M. Mechanochemically prepared reactive and energetic materials: A review. Journal of Materials Science, 2017, 52 (20): 11789- 11810. |
26 | RAVAVI-TUOUSI S S, SZPUNAR J A. Effect of structural evolution of aluminum powder during ball milling on hydrogen generation in aluminum-water reaction. International Journal of Hydrogen Energy, 2013, 38 (2): 795- 806. |
27 | HUANG X N, LV C J, WANG Y, et al. Hydrogen generation from hydrolysis of aluminum/graphite composites with a core-shell structure. International Journal of Hydrogen Energy, 2012, 37 (9): 7457- 7463. |
28 | WANG H W, CHUNG H W, TENG H T, et al. Generation of hydrogen from aluminum and water-Effect of metal oxide nanocrystals and water quality. International Journal of Hydrogen Energy, 2011, 36 (23): 15136- 15144. |
29 | CHEN X Y, ZHAO Z W, HAO M M, et al. Research of hydrogen generation by the reaction of Al-based materials with water. Journal of Power Sources, 2013, 222, 188- 195. |
30 | LIU Y A, WANG X H, LIU H Z, et al. Effect of salts addition on the hydrogen generation of Al-LiH composite elaborated by ball milling. Energy, 2015, 89, 907- 903. |
31 | FAN M Q, XU F, SUN L X, et al. Hydrolysis of ball milling Al-Bi-hydride and Al-Bi-salt mixture for hydrogen generation. Journal of Alloys and Compounds, 2008, 460 (1/2): 125- 129. |
32 | DENG Z Y, LIU Y F, TANAKA Y, et al. Modification of Al particle surfaces by γ-Al2O3 and its effect on the corrosion behavior of Al . Journal of the American Ceramic Society, 2005, 88 (4): 977- 979. |
33 | DENG Z Y, FUKASAWA T, ANDO M, et al. High-surface-area alumina ceramics fabricated by the decomposition of Al(OH)3. Journal of the American Ceramic Society, 2001, 84 (3): 485- 491. |
34 | DENG Z Y, FUKASAWA T, ANDO M, et al. Bulk alumina support with high tolerant strain and its reinforcing mechanisms. Acta Materialia, 2001, 49 (11): 1939- 1946. |
35 | DENG Z Y, FUKASAWA T, ANDO M, et al. Microstructure and mechanical properties of porous alumina ceramics fabricated by the decomposition of aluminum hydroxide. Journal of the American Ceramic Society, 2001, 84 (11): 2638- 2644. |
36 | DENG Z Y, FERREIRA J M F, TANAKA Y, et al. Physicochemical mechanism for the continuous reaction of γ-Al2O3 modified aluminum powder with water . Journal of the American Ceramic Society, 2007, 90 (5): 1521- 1526. |
37 | DENG Z Y, LIU Y F, TANAKA Y, et al. Temperature effect on hydrogen generation by the reaction of γ-Al2O3-modified Al powder with distilled water . Journal of the American Ceramic Society, 2005, 88 (10): 2975- 2977. |
38 | DENG Z Y, LIU W H, GAI W Z. Role of modification agent coverage in hydrogen generation by the reaction of Al with water. Journal of the American Ceramic Society, 2010, 93 (9): 2534- 2536. |
39 | LIU W H, GAI W Z, DENG Z Y, et al. Enhancing hydrogen-generation performance of γ-Al2O3 modified Al powder by ultrasonic dispersion . Journal of the American Ceramic Society, 2012, 95 (4): 1193- 1196. |
40 | GAI W Z, SHI Y, DENG Z Y, et al. Clarification of activation mechanism in oxide-modified aluminum. International Journal of Hydrogen Energy, 2015, 40, 12057- 12062. |
41 | GAI W Z, FANG C S, DENG Z Y. Hydrogen generation by the reaction of Al with water using oxides as catalysts. International Journal of Energy Research, 2014, 38, 918- 925. |
42 | FANG C S, GAI W Z, DENG Z Y. Al surface modification by a facile route. Journal of the American Ceramic Society, 2014, 97 (1): 44- 47. |
43 | YANG Y, GAI W Z, DENG Z Y, ZHOU J G. Hydrogen generation by the reaction of Al with water promoted by an ultrasonically prepared Al(OH)3 suspension . International Journal of Hydrogen Energy, 2014, 39, 18734- 18742. |
44 | YANG Y, GAI W Z, ZHOU J G, et al. Surface modified zero-valent aluminum for Cr(Ⅵ) removal at neutral pH. Chemical Engineering Journal, 2020, 395, 125140- 125147. |
45 | ZHANG Y X, YANG S Y, ZHANG Y Q, et al. Enhancement of Cr(Ⅵ) removal by mechanically activated micron-scale zero-valent aluminum (MA-mZVAl): Performance and mechanism especially at near-neutral pH. Chemical Engineering Journal, 2018, 353, 760- 768. |
46 | REN T F, ZHANG Y X, LIU J Q, et al. Ethanol-assisted mechanical activation of zero-valent aluminum for fast and highly efficient removal of Cr(Ⅵ). Applied Surface Science, 2020, 533, 147543- 147552. |
47 | XIE S, YANG Y, GAI W Z, et al. Oxide modified aluminum for removal of methyl orange and methyl blue in aqueous solution. RSC Advances, 2021, (11): 867- 875. |
48 | LIU C M, HUANG X Y, ZHANG H Y, et al. The decolouration of methyl orange using aluminum foam, ultrasound and direct electric current. Materials Research Express, 2018, 5 (1): 015501- 015507. |
49 | SHABBIR S, FAHEEM M, ALI N, et al. Periphyton biofilms: A novel and natural biological system for the effective removal of sulphonated azo dye methyl orange by synergistic mechanism. Chemosphere, 2017, 167, 236- 246. |
50 | ALJUNDI I H. Bromate formation during ozonation of drinking water: A response surface methodology study. Desalination, 2011, 277, 24- 28. |
51 | FISCHBACHER A, LÖPPENBERG K, SONNTAG C, et al. A new reaction pathway for bromite to bromate in the ozonation of bromide. Environmental Science & Technology, 2015, 49, 11714- 11720. |
52 | World Health Organization. Guidelines for Drinking-Water Quality [M]. 4th ed. Geneva: WHO Press, 2011: 324. |
53 | LIN K Y A. Simultaneous reductive and adsorptive removal of bromate from water using acid-washed zero-valent aluminum (ZVAl) [J]. Chemical Engineering Journal, 2016, 297: 19-25. |
54 | LIN K Y A, LIN J Y, LIEN H L. Valorization of aluminum scrap via an acid-washing treatment for reductive of toxic bromate from water. Chemosphere, 2017, 172, 325- 332. |
55 | CHIU T Y, LEE P Y, AFEDZI T W, et al. Elimination of bromate from water using aluminum beverage cans via catalytic reduction and adsorption. Journal of Colloid and Interface Science, 2018, 532, 416- 425. |
56 | ZHOU W, YANG Y, GAI W Z, et al. A comparative study on high-efficient reduction of bromate in neutral solution using zero-valent Al treated by different procedures. The Science of the Total Environment, 2021, 795, 148786- 148794. |
57 | XIE L, SHANG C L. Effects of copper and palladium on the reduction of bromate by Fe(0). Chemosphere, 2006, 64 (6): 919- 930. |
58 | LIN K Y A, LIN C H, LIN J L. Efficient reductive elimination of bromate in water using zero-valent zinc prepared by acid-washing treatments. Journal of Colloid and Interface Science, 2017, 504, 397- 403. |
59 | LIN K Y A, LIN C H, YANG H T. Enhanced bromate reduction using zero-valent aluminum mediated by oxalic acid. Journal of Environmental Chemical Engineering, 2017, 5 (5): 5085- 5090. |
60 | WU S, YANG S Y, LIU S J, et al. Enhanced reactivity of zero-valent aluminum with ball milling for phenol oxidative degradation. Journal of Colloid and Interface Science, 2020, 560, 260- 272. |
61 | United States Eenvironmental Protection Agency (US EPA). EPA non-regulatory health-based drinking water levels [EB/OL]. (2014-04-01)[2021-10-13]. http://water.epa.gov/drink/standards/hascience.cfm#dw-strandards. |
[1] | 张旭, 黄定江. 基于深度学习的铝材表面缺陷检测[J]. 华东师范大学学报(自然科学版), 2020, 2020(6): 105-114. |
[2] | 廖斌;安同一;王源身;朱守正. 微波等离子体用于橡胶表面改性处理的研究[J]. 华东师范大学学报(自然科学版), 2003, 2003(2): 40-45. |
[3] | 李敏;王振领;单永奎;戴立益;. 钛铝硅复合氧化物的合成及应用研究 [J]. 华东师范大学学报(自然科学版), 2003, 2003(2): 99-101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||