1 |
BRECHT B, REDDY D V, SILBERHORN C, et al. Photon temporal modes: A complete framework for quantum information science. Physical Review X, 2015, 5 (4): 041017.
|
2 |
RAYMER M G, WALMSLEY I A. Temporal modes in quantum optics: Then and now. Physica Scripta, 2020, 95 (6): 064002.
|
3 |
RAYMER M G, WALMSLEY I A, MOSTOWSKI J, et al. Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering. Physical Review A, 1985, 32 (1): 332- 344.
|
4 |
HARDER G, BARTLEY T J, LITA A E, et al. Single-mode parametric-down-conversion states with 50 photons as a source for mesoscopic quantum optics [J] Physical Review Letters, 2016, 116(14): 143601.
|
5 |
HAAKE F, KING H, SCHRÖDER G, et al. Fluctuations in superfluorescence. Physical Review A, 1979, 20 (5): 2047- 2063.
|
6 |
HELLER L, FARRERA P, HEINZE G, et al. Cold-atom temporally multiplexed quantum memory with cavity-enhanced noise suppression. Physical Review Letters, 2020, 124 (21): 210504.
|
7 |
TIRANOV A, STRASSMANN P C, LAVOIE J, et al. Temporal multimode storage of entangled photon pairs. Physical Review Letters, 2016, 117 (24): 240506.
|
8 |
RAYMER M G, LI Z W, WALMSLEY I A. Temporal quantum fluctuations in stimulated Raman scattering: Coherent-modes description. Physical Review Letters, 1989, 63 (15): 1586- 1589.
|
9 |
REDDY D V, RAYMER M G. Engineering temporal-mode-selective frequency conversion in nonlinear optical waveguides: From theory to experiment. Optics Express, 2017, 25 (11): 12952- 12966.
|
10 |
REDDY D V, RAYMER M G. Photonic temporal-mode multiplexing by quantum frequency conversion in a dichroic-finesse cavity. Optics Express, 2018, 26 (21): 28091- 28103.
|
11 |
DAVIS A O C, THIEL V, SMITH B J. Measuring the quantum state of a photon pair entangled in frequency and time. Optica, 2020, 7 (10): 1317- 1322.
|
12 |
ROHDE P P, MAUERER W, SILBERHORN C. Spectral structure and decompositions of optical states and their applications [J]. New Journal of Physics, 2007, 9(4): Article number 91. DOI: 10.1088/1367-2630/9/4/091.
|
13 |
REDDY D V, RAYMER M G. High-selectivity quantum pulse gating of photonic temporal modes using all-optical Ramsey interferometry. Optica, 2018, 5 (4): 423- 428.
|
14 |
FENG X T, YU Z F, CHEN B, et al. Reducing the mode mismatch noises in atom-light interactions via optimization of the temporal waveform. Photonics Research, 2020, 8 (11): 1697- 1702.
|
15 |
ANSARI V, HARDER G, ALLGAIER M, et al. Temporal-mode measurement tomography of a quantum pulse gate. Physical Review A, 2017, 96 (6): 063817.
|
16 |
ECKSTEIN A, BRECHT B, SILBERHORN C. A quantum pulse gate based on spectrally engineered sum frequency generation. Optics Express, 2011, 19 (15): 13770- 13778.
|
17 |
ANSARI V, DONOHUE J M, ALLGAIER M, et al. Tomography and purification of the temporal-mode structure of quantum light. Physical Review Letters, 2018, 120 (21): 213601.
|
18 |
YANG C, GU Z J, CHEN P, et al. Tomography of the temporal-spectral state of subnatural-linewidth single photons from atomic ensembles. Physical Review Applied, 2018, 10 (5): 054011.
|
19 |
ANSARI V, DONOHUE J M, BRECHT B, et al. Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings. Optica, 2018, 5 (5): 534- 550.
|
20 |
ANSARI V, DONOHUE J M, BRECHT B, et al. Remotely projecting states of photonic temporal modes. Optics Express, 2020, 28 (19): 28295- 28305.
|
21 |
CUI L, SU J, LI J M, et al. Quantum state engineering by nonlinear quantum interference. Physical Review A, 2020, 102 (3): 033718.
|
22 |
CHEN X, ZHANG J, OU Z Y. Mode structure of a broadband high gain parametric amplifier. Physical Review Research, 2021, 3 (2): 023186.
|
23 |
HUO N, LIU Y H, LI J M, et al. Direct temporal mode measurement for the characterization of temporally multiplexed high dimensional quantum entanglement in continuous variables. Physical Review Letters, 2020, 124 (21): 213603.
|
24 |
CHEN X, LI X Y, OU Z Y. Direct temporal mode measurement of photon pairs by stimulated emission. Physical Review A, 2020, 101 (3): 033838.
|
25 |
RAYMER M G, REDDY D V, VAN ENK S J, et al. Time reversal of arbitrary photonic temporal modes via nonlinear optical frequency conversion. New Journal of Physics, 2018, 20 (5): 053027.
|
26 |
TANG J S, ZHOU Z Q, WANG Y T, et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory [J]. Nature Communications, 2015, 6(1): Article number 8652. DOI: 10.1038/ncomms9652.
|
27 |
PATERA G, HOROSHKO D, KOLOBOV M. Quantum temporal imaging [C]// 2019 21st International Conference on Transparent Optical Networks (ICTON). IEEE, 2019. DOI: 10.1109/ICTON.2019.8840211.
|
28 |
RAYMER M G, MOSTOWSKI J. Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation. Physical Review A, 1981, 24 (4): 1980- 1993.
|
29 |
MIATTO F M, DI LORENZO PIRES H, BARNETT S M, et al. Spatial Schmidt modes generated in parametric down-conversion [J]. The European Physical Journal D, 2012, 66(10): Article number 263. DOI: 10.1140/epjd/e2012-30035-3.
|
30 |
MACPHERSON D C, SWANSON R C, CARLSTEN J L. Quantum fluctuation and correlations in the stimulated Raman scattering spectrum. Physical Review A, 1989, 39 (7): 3487- 3497.
|