1 |
WEIS R S, GAYLORD T K. Lithium niobate: Summary of physical properties and crystal structure. Applied Physics A, 1985, 37 (4): 191- 203.
|
2 |
WOOTEN E L, KISSA K M, YI-YAN A, et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6 (1): 69- 82.
|
3 |
ARIZMENDI L. Photonic applications of lithium niobate crystals. Physica Status Solidi (A), 2004, 201 (2): 253- 283.
|
4 |
GUARINO A, POBERAJ G, REZZONICO D, et al. Electro–optically tunable microring resonators in lithium niobate. Nature Photonics, 2007, 1 (7): 407- 410.
|
5 |
SOHLER W, HU H, RICKEN R, et al. Integrated optical devices in lithium niobate. Optics and Photonics News, 2008, 19 (1): 24- 31.
|
6 |
POBERAJ G, HU H, SOHLER W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser and Photonics Reviews, 2012, 6 (4): 488- 503.
|
7 |
BOES A, CORCORAN B, CHANG L, et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser and Photonics Reviews, 2018, 12 (4): 1700256.
|
8 |
QI Y F, LI Y. Integrated lithium niobate photonics. Nanophotonics, 2020, 9 (6): 1287- 1320.
|
9 |
VOLK M F, SUNTSOV S, RÜTER C E, et al. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing. Optics Express, 2016, 24 (2): 1386- 1391.
|
10 |
SIEW S Y, CHEUNG E J H, LIANG H D, et al. Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening. Optics Express, 2018, 26 (4): 4421- 4430.
|
11 |
WANG J, BO F, WAN S, et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation . Optics Express, 2015, 23 (18): 23072- 23078.
|
12 |
ZHANG M, WANG C, CHENG R, et al. Monolithic ultra-high-Q lithium niobate microring resonator . Optica, 2017, 4 (12): 1536- 1537.
|
13 |
LIN J T, YAO N, HAO Z Z, et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Physical Review Letters, 2019, 122 (17): 173903.
|
14 |
PAN A, HU C R, ZENG C, et al. Fundamental mode hybridization in a thin film lithium niobate ridge waveguide. Optics Express, 2019, 27 (24): 35659- 35669.
|
15 |
WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562 (7725): 101- 104.
|
16 |
WANG C, ZHANG M, STERN B, et al. Nanophotonic lithium niobate electro-optic modulators. Optics Express, 2018, 26 (2): 1547- 1555.
|
17 |
HE M B, XU M Y, REN Y X, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond . Nature Photonics, 2019, 13 (5): 359- 364.
|
18 |
XU M Y, HE M B, ZHANG H G, et al. High-performance coherent optical modulators based on thin-film lithium niobate platform [J]. Nature Communications, 2020, 11(1): Article number 3911.
|
19 |
LU J J, SURYA J B, LIU X W, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W. Optica, 2019, 6 (12): 1455- 1460.
|
20 |
WANG C, ZHANG M, YU M J, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation [J]. Nature Communications, 2019, 10(1): Article number 978.
|
21 |
ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 2019, 568 (7752): 373- 377.
|
22 |
JIANG H W, LIANG H X, LUO R, et al. Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities. Applied Physics Letters, 2018, 113 (2): 021104.
|
23 |
LI M X, LIANG H X, LUO R, et al. High‐Q 2D lithium niobate photonic crystal slab nanoresonators . Laser and Photonics Reviews, 2019, 13 (5): 1800228.
|
24 |
LI M X, LING J W, HE Y, et al. Lithium niobate photonic-crystal electro-optic modulator [J]. Nature Communications, 2020, 11(1): Article number 4123.
|
25 |
WANG C, LANGROCK C, MARANDI A, et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 2018, 5 (11): 1438- 1441.
|
26 |
WANG C, LI Z Y, KIM M H, et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides [J]. Nature Communications, 2017, 8(1): Article number 2098.
|
27 |
FEDOTOVA A, YOUNESI M, SAUTTER J, et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate. Nano Letters, 2020, 20 (12): 8608- 8614.
|
28 |
LI Y, HUANG Z J, SUI Z, et al. Optical anapole mode in nanostructured lithium niobate for enhancing second harmonic generation. Nanophotonics, 2020, 9 (11): 3575- 3585.
|
29 |
MA J J, XIE F, CHEN W J, et al. Nonlinear lithium niobate metasurfaces for second harmonic generation. Laser and Photonics Reviews, 2021, 15 (5): 2000521.
|
30 |
CARLETTI L, LI C, SAUTTER J, et al. Second harmonic generation in monolithic lithium niobate metasurfaces. Optics Express, 2019, 27 (23): 33391- 33398.
|
31 |
YUAN S, WU Y K, DANG Z Z, et al. Strongly enhanced second harmonic generation in a thin film lithium niobate heterostructure cavity [J]. Physical Review Letters, 2021, 127(15) : 153901.
|
32 |
QUARANTA G, BASSET G, MARTIN O J F, et al. Recent advances in resonant waveguide gratings. Laser and Photonics Reviews, 2018, 12 (9): 1800017.
|
33 |
BYKOV D A, DOSKOLOVICH L L. Spatiotemporal coupled-mode theory of guided-mode resonant gratings. Optics Express, 2015, 23 (15): 19234- 19241.
|
34 |
HSU C W, ZHEN B, STONE A D, et al. Bound states in the continuum [J]. Nature Reviews Materials, 2016, 1(9): Article number 16048.
|
35 |
HSU C W, ZHEN B, LEE J, et al. Observation of trapped light within the radiation continuum. Nature, 2013, 499 (7457): 188- 191.
|
36 |
KANG L, BAO H, WERNER D H. Efficient second-harmonic generation in high Q-factor asymmetric lithium niobate metasurfaces . Optics Letters, 2021, 46 (3): 633- 636.
|
37 |
WU F, LUO M, WU J J, et al. Dual quasibound states in the continuum in compound grating waveguide structures for large positive and negative Goos-Hänchen shifts with perfect reflection [J]. Physical Review A, 2021, 104(2) : 023518.
|
38 |
WANG S S, MAGNUSSON R, BAGBY J S, et al. Guided-mode resonances in planar dielectric-layer diffraction gratings. Journal of the Optical Society of America A, 1990, 7 (8): 1470- 1474.
|
39 |
ZELMON D E, SMALL D L, JUNDT D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate. Journal of the Optical Society of America B, 1997, 14 (12): 3319- 3322.
|