1 |
PAVLO A, ASLETT M.. What’s really new with NewSQL?. SIGMOD Record, 2016, 45 (2): 45- 55.
|
2 |
BINNIG C, CROTTY A, GALAKATOS A, et al.. The end of slow networks: It’s time for a redesign. Proceedings of the VLDB Endowment, 2016, 9 (7): 528- 539.
|
3 |
ZAMANIAN E, SHUN J, BINNIG C, et al. Chiller: Contention-centric transaction execution and data partitioning for modern networks [C]// Proceedings of the 2020 International Conference on Management of Data. 2020: 511-526.
|
4 |
FARBER F, MAY N, LEHNER W, et al. The SAP HANA database – an architecture overview [J]. IEEE Data Engineering Bulletin, 2012, 35(1): 28-33.
|
5 |
KALLMAN R, KIMURA H, NATKINS J, et al. H-store: A high-performance, distributed main memory transaction processing system [J]. Proceedings of the VLDB Endowment, 2008, 1(2): 1496–1499.
|
6 |
LOMET D, FEKETE A, WEIKUM G, et al. Unbundling transaction services in the cloud [EB/OL]. (2009-09-09)[2022-06-11]. https://arxiv.org/ftp/arxiv/papers/0909/0909.1768.pdf.
|
7 |
HUANG D X, LIU Q, CUI Q, et al.. TiDB: A raft-based HTAP database. Proceedings of VLDB Endowment, 2020, 13 (12): 3072- 3084.
|
8 |
TAFT R, SHARIF I, MATEI A, et al. CockroachDB: The resilient geo-distributed SQL database [C]// Proceedings of the 2020 International Conference on Management of Data. 2020: 1493–1509.
|
9 |
CORBETT J C, DEAN J, EPSTEIN M, et al. Spanner: Google’s globally-distributed database [C]// Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation. 2012: 251–264.
|
10 |
ZHOU J Y, XU M, SHRAER A, et al. FoundationDB: A distributed unbundled transactional key value store [C]// Proceedings of the 2021 International Conference on Management of Data. 2021: 2653–2666.
|
11 |
PENG D, DABEK F. Large-scale incremental processing using distributed transactions and notifications [C]// Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation. 2010: 251–264.
|
12 |
WANG T Z, KIMURA H.. Mostly-optimistic concurrency control for highly contended dynamic workloads on a thousand cores. Proceedings of the VLDB Endowment, 2016, 10 (2): 49- 60.
|
13 |
GUO Z H, WU K, YAN C, et al. Releasing locks as early as you can: Reducing contention of hotspots by violating two-phase locking [C]// Proceedings of the 2021 International Conference on Management of Data. 2021: 658–670.
|
14 |
WANG Z G, MU S, CAI Y, et al. Scaling multicore databases via constrained parallel execution [C]// Proceedings of the 2016 International Conference on Management of Data. 2016: 1643–1658.
|
15 |
THOMSON A, DIAMOND T, WENG S C, et al. Calvin: Fast distributed transactions for partitioned database systems [C]//Proceedings of the ACM SIGMOD International Conference on Management of Data. 2012. https://doi.org/10.1145/2213836.2213838.
|
16 |
GUO H, ZHOU X, CAI L. Lock violation for fault-tolerant distributed database system [C]// 2021 IEEE 37th IEEE International Conference on Data Engineering. 2021: 1416–1427.
|
17 |
TAFT R, MANSOUR E, SERAFINI M, et al.. E-Store: Fine-grained elastic partitioning for distributed transaction processing systems. Proceedings of the VLDB Endowment, 2014, 8 (3): 245- 256.
|
18 |
TIAN B Y, HUANG J M, MOZAFARI B Y, et al.. Contention-aware lock scheduling for transactional databases. Proceedings of the VLDB Endowment, 2018, 11 (5): 648- 662.
|
19 |
COOPER B F, SILBERSTEIN A, TAM E, et al. Benchmarking cloud serving systems with YCSB [C]// Proceedings of the 1st ACM Symposium on Cloud Computing. 2010: 143–154.
|