收稿日期: 2016-05-23
网络出版日期: 2017-01-13
基金资助
国家自然科学基金青年项目(31400605); 上海交通大学现代农业交叉基金(2014007)
PM2.5 deposition velocity and impact factors on leaves of typical tree species in Shanghai
Received date: 2016-05-23
Online published: 2017-01-13
利用城市的绿化和植被来削减大气中细颗粒物(PM2.5)污染, 是城市应对大气污染的措施之一. 本研究首先通过强风吹脱的方法, 在不同季节测定了上海市15种常见园林树种叶片表面的(PM2.5)干沉降速率, 并且对各植物叶片的蜡质含量、表面粗糙度和表面自由能等参数进行了测定, 建立回归模型, 研究植被滞尘能力与植物叶片自身特性的关系. 结果表明, 广玉兰、圆柏和罗汉松等树种的叶片具有较高的(PM2.5)干沉降速率, 滞尘能力较强; 叶片蜡质含量、表面自由能色散分量、表面自由能极性分量、轮廓算术平均偏差(Ra)这4项指标对于常绿树种的滞尘能力具有显著影响; 叶片的表面自由能极性分量对落叶树种具有显著性影响; 各指标对针叶树种都不具有显著影响. 因此, 为提高植物对大气的净化作用, 可选滞尘能力较好用针叶树种的和紫叶李、广玉兰以及槐等阔叶树种.
关键词: 细颗粒污染物(PM2.5); 绿化树种; 干沉降速率; 叶片特性
章旭毅 , 殷 杉 , 江 畅 , 熊 峰 , 朱鹏华 , 周丕生 . 上海常见绿化树种叶片上PM2.5干沉降速率及影响因素[J]. 华东师范大学学报(自然科学版), 2016 , 2016(6) : 27 -37 . DOI: 10.3969/j.issn.1000-5641.2016.06.002
The use of urban vegetation has become one of the most important measures to reduce fine particles pollution (PM2.5) in the atmosphere. In this study, PM2.5 dry deposition velocities of 15 common-planted greening trees in Shanghai were firstly measured through strongly blowing method. Wax content, surface roughness and surface free energy of each plant leaves were determined, and the regression model was built to explore the relationship between leaves’ characters and their abilities to detain particles. The results has shown that leaves of Magnolia grandiflora, Podocarpus macrophyllus, Sabina chinensis and some other tree species have a higher PM2.5 dry deposition velocity, which has strong capability of detaining dust; wax content, polar component, dispersion component and arithmetical mean deviation of the profile (Ra) are significant to evergreen trees while insignificant to conifers, and polar component is significant to deciduous trees. Therefore, to improve the particles purification of plants, it is highly recommended that coniferous tree species, broad-leaved trees, such as Prunus cerasifera, Magnolia grandiflora and Sophora japonica and some other trees of high dust retention abilities, should be better options in practice.
[ 1 ] 宁红兵, 陈媛媛, 张鹏. PM2.5污染的研究进展及防治对策[J].广东化工, 2015(5): 13-17.
[ 2 ] FANN N, RISLEY D. The public health context for PM2.5 and ozone air quality trends[J]. Air Quality, Atmosphere and Health, 2013, 6(1): 1-11.
[ 3 ] SCHEERS H, JACOBS L, CASAS L, et al. Long-term exposure to particulate matter air pollution is a risk factor for stroke: Meta-analytical evidence[J]. Stroke: A Journal of Cerebral Circulation, 2015, 46(11): 3058-3066.
[ 4 ] KLOOG I, ZZNOBETTI A, NORDIO F, et al. Effects of airborne fine particles (PM2.5) on deep vein thrombosis admissions in the northeastern United States [J]. Journal of Thrombosis and Haemostasis, 2015, 13(5): 768-774.
[ 5 ] ROSSNER P J., TULUPOVAA E, ROSSNEROVAA A, et al. Reduced gene expression levels after chronic exposure to high concentrations of air pollutants [J]. Mutation Research, 2015, 780: 60-70.
[ 6 ] YANG J, YU Q, GONG P. Quantifying air pollution removal by green roofs in Chicago[J]. Atmospheric Environment, 2008, 42: 7266-7273.
[ 7 ] NOWAK D J, CRANE D E, STEVENS J C. Air pollution removal by urban trees and shrubs in the United States [J]. Urban Forestry & Urban Greening, 2006(4): 115-123.
[ 8 ] PULLMAN M. Conifer PM2.5 deposition and re-suspension in wind and main events[D]. Ithaca: Cornell University, 2009.
[ 9 ] WAGNER P, FURSTNER R, BARTHLOTT W, et al. Quantitative assessment to the structural basis of water repellency in natural and technical surfaces [J]. Journal of Experimental Botany, 2003, 54(385): 1295-1303.
[10] BURTON Z, BHUSHAN B. Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces [J]. Ultramicroscopy, 2006, 106(8/9): 709-719.
[11] PERKINS M C, ROBERTS C J, BRIGGS D, et al. Surface morphology and chemistry of Prunus laurocerasus L. leaves: A study using X-ray photoelectron spectroscopy, time-of-light secondary-ion mass spectrometry, atomicforce microscopy and scanning electron microscopy [J]. Planta, 2005, 221(1): 123-134.
[12] 刘璐, 管东生, 陈永勤. 广州市常见行道树种叶片表面形态[J]. 生态学报, 2013, 33(8): 2604-2614.
[13] 王兵, 王晓燕, 牛香, 等.北京市常见落叶树种叶片滞纳空气颗粒物功能[J]. 环境科学, 2015, 36(6): 2005-2007.
[14] 陈波, 刘海龙, 赵东波, 等.北京西山绿化树种秋季滞纳PM2.5能力及其与叶表面AFM特征的关系[J]. 应用生态学报, 2016, 27(3): 777-784.
[15] 房瑶瑶, 王兵, 牛香. 叶片表面粗糙度对颗粒物滞纳能力及洗脱特征的影响[J]. 水土保持学报, 2015, 29(4): 110-115.
[16] ZHANG W K, WANG B, NIU X. Study on the adsorption capacities for airborne particulates of landscape plants in different polluted regions in Beijing (China)[J]. International Journal of Environmental Research and Public Health, 2015(12): 9623-9638.
[17] 新华社. 我国霾污染具有季节性、地域性特点[EB/OL]. [2016-04-08]. http://www.envir.gov.cn/info/2016/3/39927.htm, 2016-03-09/2016-5-5.
[18] 游文娟, 张庆费, 夏檑. 城市绿化植物叶片结构对光强的响应[J]. 西北林学院学报, 2008, 23(5): 22-25.
[19] 石辉, 王会霞, 李秧秧. 植物叶表面的润湿性及其生态学意义[J]. 生态学报, 2011, 31(15): 4287-4298.
[20] NEINHUIS C, BARTHLOTT W. Seasonal changes of leaf surface contamination in beech, oak and ginkgo in relation to leaf micromorphology and wettability. New Phytologist, 1998, 138(1): 91-98.
[21] HANBA Y T, MORIYA A, KIMURA K. Effect of leaf surface wetness and wettability on photosynthesis in bean and pea [J]. Plant, Cell and Environment, 2004, 27(4): 413-421.
[22] KOCH K, BHUSHAN B, BARTHLOTT W. Multifunctional surface structures of plants: An inspiration for biomimetics [J]. Progress in Materials Science, 2009, 54(2): 137-178.
[23] 玉亚, 石辉. 石墨粉末润湿特性及其表面自由能的研究[J].安全与环境学报, 2007, 7(1): 60-61.
[24] 田军, 薛群基. 涂层表面能色散分量和极性分量对涂层与液体石蜡间润湿性的影响[J]. 石油与天然气化工, 1998, 27(2): 113-114.
[25] 张家洋, 刘兴洋, 邹曼, 等. 37种道路绿化树木滞尘能力的比较[J].云南农业大学学报, 2013, 28 (6): 905-912.
[26] 杨佳, 王会霞, 谢滨泽, 等.北京9个树种叶片滞尘量及叶面微形态解释[J]. 环境科学研究, 2005,28(3): 384-392.
[27] 王蕾, 哈斯, 刘连友, 等.北京市六种针叶树叶面附着颗粒物的理化特征[J]. 应用生态学报, 2007,18(3): 487-492.
[28] 李海梅, 刘霞. 青岛市城阳区主要园林树种叶片表皮形态与滞尘量的关系[J]. 生态学杂志,2008, 27(10): 659-662.
/
〈 |
|
〉 |