论文

基于城镇生活污水厂提标改造的新型原位强化脱氮装置试验研究

  • 崔贺 ,
  • 杨银川 ,
  • 黄民生 ,
  • 杨乐 ,
  • 尹超 ,
  • 何岩 ,
  • 曹承进
展开
  • 1. 华东师范大学 生态与环境科学学院, 上海 200241;
    2. 华东师范大学 上海市城市化生态过程与生态恢复重点实验室, 上海 200241
崔贺,男,博士研究生,研究方向为水环境治理与修复.E-mail:2625367386@qq.com.

收稿日期: 2018-07-16

  网络出版日期: 2018-12-01

基金资助

国家科技重大专项(2014ZX07101012)

Experimental study on a new enhanced in-situ denitrification device for upgrading domestic wastewater treatment plants

  • CUI He ,
  • YANG Yin-chuan ,
  • HUANG Min-sheng ,
  • YANG Le ,
  • YIN Chao ,
  • HE Yan ,
  • CAO Cheng-jin
Expand
  • 1. School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China;
    2. Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China

Received date: 2018-07-16

  Online published: 2018-12-01

摘要

为了有效强化城镇生活污水厂的脱氮效率,研发了一种新型原位强化脱氮装置——管式生物净水装置(Tubular bio-purification device,TBD),分别以丝瓜络、棕丝、甘蔗渣和化学纤维填料等4种固体材料为TBD的填充基质,通过对比不同基质类型的TBD的强化脱氮性能,得出TBD的最佳填充基质,并结合基质生物膜的高通量测序结果解析其脱氮机理.结果表明,以甘蔗渣为填充基质的TBD对水体中氮素的去除性能明显优于其他基质,其对NH4+-N、NO3--N、NO2--N及TN的平均去除率分别可达72%、64%、97%和82%,经过其净化的水体NH4+-N及TN浓度均可满足《城镇污水处理厂污染物排放标准》(GB 18918—2002)规定的一级A标准,因此甘蔗渣是TBD的最佳填充基质;填充甘蔗渣的TBD的微生物物种丰度和多样性较高,其Chao1指数为9 743.55、Shannon指数为6.37,其微生物群落结构中反硝化相关菌群占绝对优势(23.75%),并含有一定比例的硝化(7.73%)及厌氧氨氧化(2.0%)相关菌群,表明填充甘蔗渣的TBD内部环境有利于脱氮功能菌群的富集和生长.本研究以期为该装置服务于城镇生活污水厂提标改造过程中强化脱氮的工程化应用提供依据和参数.

本文引用格式

崔贺 , 杨银川 , 黄民生 , 杨乐 , 尹超 , 何岩 , 曹承进 . 基于城镇生活污水厂提标改造的新型原位强化脱氮装置试验研究[J]. 华东师范大学学报(自然科学版), 2018 , 2018(6) : 12 -21 . DOI: 10.3969/j.issn.1000-5641.2018.06.002

Abstract

To effectively strengthen the nitrogen removal efficiency of wastewater treatment plants (WWTPs), a novel deep denitrification device (Tubular bio-reactor device, TBD) was developed. Four kinds of solid materials (loofah, palm fiber, bagasse, and fibrous fillers) were used as fillers for the TBD. The best filler type was determined by comparing the denitrification performance of TBDs with different fillers. Then, high-throughput sequencing results of the matrix biofilm were used to analyze the denitrification mechanism. The results showed that the best removal rate of nitrogen from water was achieved with the TBD filled with bagasse. For this TBD, the removal rates of NH4+-N, NO3--N, NO2--N and TN were 72%, 64%, 97%, and 82%, respectively, and NH4+-N and TN concentrations both attained Grade 1-A of the Chinese-National discharge standard for WWTPs (GB 18918-2002). TBD filled with bagasse had a high abundance and diversity of microbial species with a Chao1 index of 9 743.55 and a Shannon index of 6.37, and the denitrification-related genus in the microbial community structure was dominant (23.75%). In addition, nitrification (7.73%) and anaerobic ammonium oxidation (2.0%) related genera were detected in the biofilm sample. The results suggest that the internal environment of TBD filled with "bagasse" was good for the enrichment and growth of denitrifying-related bacteria. This study was aimed at providing a scientific basis and parameters for TBDs used in engineering applications.

参考文献

[1] QIN B, GAO G, ZHU G, et al. Lake eutrophication and its ecosystem response[J]. Chinese Science Bulletin, 2013, 58(9):961-970.
[2] 刘海琴, 邱园园, 闻学政, 等. 4种水生植物深度净化村镇生活污水厂尾水效果研究[J]. 中国生态农业学报, 2018(4):616-626.
[3] 姚敬博, 邵亮. 某城市污水处理厂提标改造工艺探讨[J]. 辽宁化工, 2017(5):498-501.
[4] 赵银慧, 李莉娜, 景立新, 等. 污水处理厂氮排放特征[J]. 中国环境监测, 2015(4):58-61.
[5] 陈立, 李成江, 郭兴芳, 等. 城镇污水处理厂提标改造的几点思考[J]. 水处理技术, 2011(9):120-122.
[6] 王建华, 陈永志, 彭永臻. 低碳氮比实际生活污水A~2O-BAF工艺低温脱氮除磷[J]. 中国环境科学, 2010(9):1195-1200.
[7] 陈翰, 马放, 李昂, 等. 低温条件下污水生物脱氮处理研究进展[J]. 中国给水排水, 2016(8):37-43.
[8] 黄民生, 崔贺, 常越亚, 等. 一种管式生物净水装置及其净水方法:201510377317.1[P]. 2015-10-14.
[9] 李斌, 郝瑞霞, 赵文莉. 玉米芯与海绵铁复合填料的反硝化脱氮特性[J]. 中国给水排水. 2014(7):31-34.
[10] 张翔凌, 阮聪颖, 黄华玲, 等. 不同类型LDHs覆膜改性人工湿地生物陶粒基质脱氮效果研究[J]. 环境科学学报, 2015(10):3178-3184.
[11] 张雁秋, 曹文平, 刘莉, 等. 基质对生态浮床净化效果和大型水生植物生长的影响[J]. 徐州工程学院学报(自然科学版), 2013(4):18-23.
[12] 栾晓男, 田云飞, 郑力, 等. 丝瓜络填料反硝化滤池对生活污水的净化[J]. 环境工程学报, 2016(7):3471-3476.
[13] 王营章, 张尚华, 刘志强, 等. 丝瓜络填料SBBR对生活污水脱氮除磷的试验研究[J]. 工业水处理, 2012(11):55-58.
[14] 马占青, 温淑瑶. 棕毛纤维介质对富营养化水体净化效果的研究[J]. 农业工程学报, 2008(9):229-233.
[15] 王曼曼, 汪家权, 褚华男. 固态碳源去除地下水硝酸盐的模拟实验[J]. 环境工程学报, 2013(2):501-506.
[16] 邵留, 徐祖信, 金伟, 等. 农业废物反硝化固体碳源的优选[J]. 中国环境科学, 2011(5):748-754.
[17] 陈耀章. 接触氧化填料问题的探讨[J]. 石油化工环境保护, 1992(3):5-9.
[18] 杨旻, 吴小刚, 张维昊, 等. 富营养化水体生态修复中水生植物的应用研究[J]. 环境科学与技术. 2007(7):98-102.
[19] 李哲, 王喜山, 赵国臣, 等. 生菜的营养价值及高产栽培技术[J]. 吉林蔬菜, 2014(9):14-15.
[20] 杨乐. 污水厂节地方法初探与强化脱氮实验研究[D]. 上海:华东师范大学, 2016.
[21] 韩剑宏, 刘燕, 朱浩君, 等. 反硝化生物滤池的自然挂膜启动研究[J]. 中国给水排水, 2015(3):1-4.
[22] QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project:Improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(D1):D590-D596.
[23] 李治玲. 生物炭对紫色土和黄壤养分、微生物及酶活性的影响[D]. 重庆:西南大学, 2016.
[24] 马勇, 彭永臻, 于德爽. A/O生物脱氮工艺处理生活污水中试(二)系统性能和SND现象的研究[J]. 环境科学学报, 2006(5):710-715.
[25] ZHAO W H, ZHANG Y, LYV D M, et al. Advanced nitrogen and phosphorus removal in the pre-denitrification anaerobic/anoxic/aerobic nitrification sequence batch reactor (pre-A2NSBR) treating low carbon/nitrogen (C/N) wastewater[J]. Chemical Engineering Journal, 2016, 302:296-304.
[26] 刘欢, 王源, 骆灵喜, 等. 城市污水处理厂高溶解氧尾水脱氮研究[J]. 广东化工, 2016(14):26-28.
[27] KUBA T, VANLOOSDRECHT M, HEIJNEN J J. Phosphorus and nitrogen removal with minimal cod requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system[J]. Water Research, 1996, 30(7):1702-1710.
[28] CHOI C, LEE J, LEE K, et al. The effects on operation conditions of sludge retention time and carbon/nitrogen ratio in an intermittently aerated membrane bioreactor (IAMBR)[J]. Bioresource Technology, 2008, 99(13):5397-5401.
[29] 韦钦胜, 王保栋, 陈建芳, 等. 长江口外缺氧区生消过程和机制的再认知[J]. 中国科学:地球科学, 2015(2):187-206.
[30] 徐亚同. 废水反硝化除氮[J]. 上海环境科学, 1994(10):8-12.
[31] 乔启成, 杨燕舞, 王立章. 亚硝化控制技术的研究现状与动向[J]. 环境技术, 2005(5):47-49.
[32] SVEHLA P, JENICEK P, HABART J, et al. Use of the accumulation of nitrite in biological treatment of waste water[J]. Chemicke Listy, 2009, 103(3):255.
[33] 袁怡, 黄勇, 邓慧萍, 等. C/N比对反硝化过程中亚硝酸盐积累的影响分析[J]. 环境科学, 2013(4):1416-1420.
[34] BORGES M T, MORAIS A, CASTRO P. Performance of outdoor seawater treatment systems for recirculation in an intensive turbot (Scophthalmus maximus) farm[J]. Aquaculture International, 2003, 11(6):557-570.
[35] WU Q, HU Y, LI S, et al. Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement[J]. Bioresource Technology, 2016, 211:451-456.
[36] CAO W, ZHANG Y. Removal of nitrogen (N) from hypereutrophic waters by ecological floating beds (EFBs) with various substrates[J]. Ecological Engineering, 2014, 62:148-152.
[37] LI L, HE C, JI G, et al. Nitrogen removal pathways in a tidal flow constructed wetland under flooded time constraints[J]. Ecological Engineering, 2015, 81:266-271.
[38] LI H D, ZHANG L, LIU J L, et al. Anti-shock Loading Performance of OAA/SBR Process in Biological Nitrogen Removal[J]. China Water & Wastewater. 2016, 32:80-83.
[39] CHEN Y, ZHAO Z, PENG Y, et al. Performance of a full-scale modified anaerobic/anoxic/oxic process:High-throughput sequence analysis of its microbial structures and their community functions[J]. Bioresource Technology, 2016, 220:225-232.
[40] 仝欣楠, 王欣泽, 何小娟, 等. 人工芦苇湿地氨氮污染物去除及氨氧化菌群落多样性分析[J]. 环境科学研究, 2014(2):218-224.
[41] GAO L, ZHOU W, HUANG J, et al. Nitrogen removal by the enhanced floating treatment wetlands from the secondary effluent[J]. Bioresource Technology, 2017, 234:243-252.
[42] ZHONG F, WU J, DAI Y, et al. Bacterial community analysis by PCR-DGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration[J]. Applied Microbiology & Biotechnology, 2015, 99(3):1499-1512.
[43] LIU Z, FRIGAARD N, VOGL K, et al. Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum Chlorobi[J]. Frontiers in Microbiology, 2012(3):185.
[44] HE Y, ZHOU G M, ZHAO Y C. Nitrification with high nitrite accumulation for the treatment of "Old" landfill leachates[J]. Environmental Engineering Science, 2007, 24(8):1084-1094.
[45] NIKOLAEV A, KOZLOV M N, KEVBRINA M V, et al. Candidatus "Jettenia moscovienalis" sp. nov., a new species of bacteria carrying out anaerobic ammonium oxidation[J]. Mikrobiologiia, 2015, 84(2):236-243.
[46] ALI M, HAROON M F, NARITA Y, et al. Draft genome sequence of the anaerobic ammonium-oxidizing bacterium "Candidatus Brocadia sp. 40"[J]. Genome Announcements, 2016, 4(6):e01377-16.
[47] 张诗颖, 吴鹏, 宋吟玲, 等. 厌氧氨氧化与反硝化协同脱氮处理城市污水[J]. 环境科学, 2015(11):4174-4179.
文章导航

/