考虑一类由谱正α-稳定过程驱动的SIS(易感-感染-易感)模型.首先证明了全局正解的存在唯一性;其次,利用Khasminskii引理和Lyapunov方法,得到了平稳分布存在唯一性的条件,并证明了模型的指数遍历性;最后,给出了模型灭绝的条件.
A susceptible-infected-susceptible (SIS) epidemic model driven by spectrally positive α-stable processes is considered. Firstly, the uniqueness and the existence of the global positive solution are proved. Next, by using Khasminskii's lemma and the Lyapunov method, conditions for the existence of a unique stationary distribution are given. In addition, the model is shown to be exponentially ergodic. Finally, conditions for extinction of the model are given.
[1] World Health Organization. Number of deaths due to HIV[EB/OL].[2017-08-01]. http://www.who.int/gho/hiv/epidemicstatus/deaths/en/.
[2] World Health Organization. How many TB cases and deaths are there?[EB/OL].[2017-08-01]. http://www.who.int/gho/tb/epidemic/casesdeaths/en/.
[3] KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of London, 1927, 115:700-721.
[4] HETHCOTE H W, YORKE J A. Gonorrhea Transmission Dynamics and Control[M]. Berlin:Springer-Verlag, 1984.
[5] GRAY A, GREENHALGH D, HU L, et al. A stochastic differential equations SIS epidemic model[J]. Siam Journal on Applied Mathematics, 2011, 71(3):876-902.
[6] RICHARDSON L F. Variation of the frequency of fatal quarrels with magnitude[J]. Journal of the American Statistical Association, 1948, 43(244):523-546.
[7] BROCKMANN D, HUFNAGEL L, GEISEL T. The scaling laws of human travel[J]. Nature, 2006, 439:462-465.
[8] NOLAN J P. Stable Distributions-Models for Heavy Tailed Data[M]. Boston:Birkhauser, 2009.
[9] MAO X. Exponential Stability of Stochastic Differential Equations[M]. New York:Marcel Dekker, 1994.
[10] BAO J, MAO X, YIN G G, et al. Competitive Lotka-Volterra population dynamics with jumps[J]. Nonlinear Analysis Theory Methods and Applications, 2011, 74(17):6601-6616.
[11] APPLEBAUM D. Lévy Processes and Stochastic Calculus[M] 2nd ed. Cambridge:Cambridge University Press, 2009:251.
[12] KLEBANER F C. Introduction to Stochastic Calculus with Applications[M]. 2nd ed. Melbourne:Monash University Press, 2004:170.
[13] KHASMINSKⅡ R. Stochastic Stability of Differential Equations[M]. Berlin:Springer, 2011:107.
[14] ZHANG Z, ZHANG X, TONG, J. Exponential ergodicity for population dynamics driven by α-stable processes[J]. Statistics and Probability Letters, 2017, 125:149-159.
[15] CHEN X, CHEN Z, TRAN K, et al. Properties of switching jump diffusions:Maximum principles and Harnack inequalities[J]. Bernoulli, preprint, 2018.
[16] CHEN X S, CHEN Z Q, TRAN K, et al. Recurrence and ergodicity for a class of regime-switching jump diffusions[J]. Applied Mathematics and Optimization, 2017(6):1-31.
[17] 沈燮昌. 数学分析2[M]. 北京:高等教育出版社, 2014.
[18] MEYN S P, TWEEDIE R L. Stability of Markovian processes Ⅲ:Foster-Lyapunov criteria for continuous-time processes[J]. Advances in Applied Probability, 2010, 25(3):518-548.
[19] LIPSTER R SH, A strong law of large numbers for local martingales[J]. Stochastics, 1980, 3:217-228.