地理学

基于红外高光谱探测器的大气CO2反演通道选择

  • 李璐含 ,
  • 束炯 ,
  • 尹球 ,
  • 张雷 ,
  • 刘延安
展开
  • 1. 华东师范大学 地理信息科学教育部重点实验室, 上海 200241;
    2. 华东师范大学 地理科学学院, 上海 200241;
    3. 中国气象局 卫星用户办公室, 上海 200030;
    4. 华东师范大学 信息科学技术学院 上海市多维度信息处理重点实验室, 上海 200241
李璐含,女,硕士研究生,研究方向为气候变化与大气环境遥感.

收稿日期: 2018-03-05

  网络出版日期: 2019-05-30

基金资助

国家自然科学基金(41271055,41601469);上海市气象局科技开发项目(YJ201408)

HIRAS channel selection for atmospheric CO2 retrievals

  • LI Lu-han ,
  • SHU Jiong ,
  • YIN Qiu ,
  • ZHAGN Lei ,
  • LIU Yan-an
Expand
  • 1. Key Laboratory of Geographic Information Science(Ministry of Education), East China Normal University, Shanghai 200241, China;
    2. School of Geographic Sciences, East China Normal University, Shanghai 200241, China;
    3. Meteorological Satellite User's Office of China Meteorological Administration, Shanghai 200030, China;
    4. Shanghai Key Laboratory of Multidimensional Information Processing, School of Information Science Technology, East China Normal University, Shanghai 200241, China

Received date: 2018-03-05

  Online published: 2019-05-30

摘要

红外高光谱探测器(HIRAS)搭载于2017年11月15日发射的FY-3D卫星上,其探测范围覆盖15 μm及4.3 μm波段的CO2强吸收带,可用于反演CO2大气柱浓度,且可以与其他温室气体传感器数据比较印证,有助于组成全球CO2的监测星座.选择对CO2变化敏感而受其他参数干扰最小的波段,是卫星走向实用阶段前最重要的研究任务之一.本研究首先取HIRAS光谱分辨率较高的15 μm波段作为研究对象,利用逐线积分辐射传输模式,模拟了5种标准大气模式下卫星接收的大气出射辐射,分析了CO2与H2O、O3、地表温度和地表发射率等其他影响参数的敏感性;然后基于最优敏感性廓线选择的方法,以信噪比、CO2的响应和雅克比廓线为依据,选出了不同地区、不同季节背景下5组通道,并讨论了不同大气层结下通道特征的差异;最后假设在不同的仪器噪声下进行选择试验,指出了仪器噪声越低,越有助于选出CO2敏感高度在平流层的通道.通道选择的结果及特性亦可为未来同类仪器的设计提供参考.

本文引用格式

李璐含 , 束炯 , 尹球 , 张雷 , 刘延安 . 基于红外高光谱探测器的大气CO2反演通道选择[J]. 华东师范大学学报(自然科学版), 2019 , 2019(3) : 186 -198 . DOI: 10.3969/j.issn.1000-5641.2019.03.020

Abstract

The Hyperspectral Infrared Atmospheric Sounder (HIRAS) instrument onboard the Feng Yun-3D (FY-3D) satellite, launched on November 15, 2017, can be employed to retrieve column concentration of CO2 with strong absorption band sat 15 μm and 4.3 μm. The HIRAS contributes to monitoring constellations for global CO2 observation by comparison with data of other greenhouse gas sensors. Thus, the selection of a band which is concurrently sensitive to CO2 changes and resistant to interference from other parameters is one of the most critical tasks to enable use of the satellite for practical applications. First, based on the line-by-line radiative transfer model, the HIRAS radiance in the hyperspectral 15 μm band was simulated for five standard atmospheric models,and the responses of given channels to the perturbation of CO2 and other atmospheric components (H2O, O3, surface temperature, and emissivity) were analyzed. Second,using the signal-to-interference ratio,the CO2 response, and the Jacobian profiles as criteria, five different sets of channels for each condition were selected by the Optimal Sensitivity Profile (OSP) method; this was accompanied by a discussion of channel differences for different atmosphere stratification. Third, experiments involving different levels of instrumental noise showed that the lower the instrument's noise, the more helpful it is to select a CO2 sensitive height in the stratosphere. The results of the channel selection in this paper present references for instrument design in the future.

参考文献

[1] 王倩, 杨忠东, 毕研盟. 高光谱遥感仪器的光谱参数和信噪比需求[J]. 应用气象学报, 2014, 25(5):600-609.
[2] WMO GREENHOUSE GAS BULLETIN. The State of Greenhouse Gases in the Atmosphere Using Global Observations through 2016[EB/OL].[2018-03-01]. http://www._wmo._int/pages/prog/arep/gaw/ghg/ghgbulletin13.html.
[3] BUTLER J H, MONTZKA S A. The NOAA Annual Greenhouse Gas Index-2017 Update[R]. NOAA Earth System Research Laboratory, 2017.
[4] BALLANTYNE A P, ALDEN C B, MILLER J B, et al. Increase in observed net carbon dioxide uptake by land oceans during the past 50 years[J]. Nature, 2012, 488(7409):70.
[5] CHÉDIN A, SAUNDERS A, HOLLINGSWORTH A, et al. The feasibility of monitoring CO2 from highresolution infrared sounders[J]. Journal of Geophysical Research, 2003, 108(D2):49-65.
[6] ZHOU M, SHU J, SONG C, et al. Sensitivity studies for atmospheric carbon dioxide retrieval from atmospheric infrared sounder observations[J]. Journal of Applied Remote Sensing, 2014, 8(1). DOI:10. 1117/1. JRS. 8. 083697.
[7] SONG C, SHU J, ZHOU M, et al. Sensitivity studies of high-precision methane column concentration inversion using a line-by-line radiative transfer model[J]. Frontiers of Earth Science, 2013, 7(4):439-446.
[8] CHAHINE M T, CHEN L, DIMOTAKIS P, et al. Satellite remote sounding of mid-tropospheric CO2[J]. Geophysical Research Letters, 2008, 35(17):179-190.
[9] WENG F, ZHAO L, FERRARO R R, et al. Advanced microwave sounding unit cloud and precipitation algorithms[J]. Radio Science, 2003, 38(4). DOI:10. 1029/2002RS002679.
[10] CREVOISIER C, CHÉDIN A, MATSUEDA H, et al. First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations[J]. Atmospheric Chemistry & Physics, 2009, 9(14):4797-4810.
[11] 陆宁. 基于CrIS热红外数据的晴空条件下CO2浓度遥感反演研究[D]. 北京:北京交通大学, 2015.
[12] 漆成莉, 顾明剑, 胡秀清, 等. 风云三号卫星红外高光谱探测技术及潜在应用[J]. 气象科技进展, 2016, 6(1):88-93.
[13] RABIER F, FOURRIE N, CHAFÄI D, et al. Channel selection methods for Infrared Atmospheric Sounding Interferometer radiances[J]. Quarterly Journal of the Royal Meteorological Society, 2002, 128(581):1011-1027.
[14] 毕研盟, 杨忠东, 卢乃锰, 等. 近红外高光谱探测仪通道选择[J]. 应用气象学报, 2014, 25(2):143-149.
[15] SHANNON C E. The mathematical theory of communication[M]. Champaign, IL:University of Illinois Press, 1998.
[16] 董超华. 卫星高光谱红外大气遥感原理和应用[M]. 北京:科学出版社, 2013:78-79, 87.
[17] RODGERS C D. Information content and optimization of high-spectral-resolution measurements[C]//SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics, 1996.
[18] LERNER J A, WEISZ E, KIRCHENGAST G. Temperature and humidity retrieval from simulated Infrared Atmospheric Sounding Interferometer (IASI) measurements[J]. Journal of Geophysical Research Atmospheres, 2002, 107(D14):ACH 4-1-ACH 4-11.
[19] CREVOISIER C, CHEDIN A, SCOTT N A. AIRS channel selection for CO2, and other trace-gas retrievals[J]. Quarterly Journal of the Royal Meteorological Society, 2003, 129:2719-2740.
[20] 刘毅, 吕达仁, 陈洪滨, 等. 卫星遥感大气CO2的技术与方法进展综述[J]. 遥感技术与应用, 2011, 26(2):247-254.
[21] PAGANO T S, FETZER E J. The Atmospheric Infrared Sounder (AIRS) on the NASA Aqua Spacecraft:A general remote sensing tool for understanding atmospheric structure, dynamics, and composition[J]. Proceedings of SPIE, 2010, 7827. DOI:10. 1117/12. 865335.
[22] HANY, CHEN Y, JIN X, et al. Cross Track Infrared Sounder(CrIS) Sensor Data Record (SDR) User's GuideVersion 1[R]. Washington, DC:NOAA Technical ReportNESDIS 143, 2013.
[23] 张磊, 董超华, 张文建, 等. 星载干涉式超高光谱分辨率红外大气探测仪及其产品[J]. 气象科技, 2008, 36(5):639-642.
[24] SIMEONI D, BLUMSTEIN D, MACIASZEK T. Design and development of IASI instrument[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2004, (5543):208-219.
[25] AUMANN H H, PAGANO T S, STROW L L. Atomospheric Infrared Sounder (AIRS) on the Earth Observing System[C]//International Asia-Pacific Symposium on Remote Sensing of, the Atmosphere, Environment, and Space. International Society for Optics and Photonics, 2001:332-343.
[26] 漆成莉. FY-3D星红外高光谱大气探测仪辐射定标方法研究[C]//第33届中国气象学会年会S21新一代气象卫星技术发展及其应用. 中国气象学会, 2016:4.
[27] 周曼蒂. 对流层CO2浓度卫星遥感反演及误差分析[D]. 上海:华东师范大学, 2013.
[28] ALVARADO M J, PAYNE V H, MLAWER E J, et al. Performance of the line-by-line radiative transfer model (LBLRTM) for temperature, water vapor, and trace gas retrievals:recent updates evaluated with IASI case studies[J]. Atmospheric Chemistry & Physics, 2013, 13(14):6687-6711.
[29] 叶函函, 王先华, 吴军, 等. 二氧化碳浓度高精度反演的敏感性研究[J]. 大气与环境光学学报, 2011, 6(3):208-214.
[30] CLOUGH S A, SHEPHARD M W, MLAWER E J, et al. Atmospheric radiative transfer modeling:Asummary of the AER codes[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 91(2):233-244.
[31] GAMBACORTA A, BARNET C D. Methodology and Information Content of the NOAA NESDIS Operational Channel Selection for the Cross-Track Infrared Sounder (CrIS)[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 51(6):3207-3216.
[32] CONWAY T J, TANS P P, WATERMAN L S, et al. Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network[J]. Journal of Geophysical Research Atmospheres, 1994, 99(D11):22831-22856.
[33] CHÉDIN A, HOLLINGSWORTH A, SCOTT N A, et al. Annual and seasonal variations of atmospheric CO2, N2O and CO concentrations retrieved from NOAA/TOVS satellite observations[J]. Geophysical Research Letters, 2002, 29(8):110-111.
[34] DIAO A, SHU J, SONG C. Global consistency check of AIRS and IASI total CO2 column concentrations using WDCGG ground-based measurements[J]. Frontiers of Earth Science, 2017, 11(1):1-10.
文章导航

/