物理学与电子学

CrN中原子位移的第一性原理计算研究

  • 王倩倩 ,
  • 赵振杰 ,
  • 李欣 ,
  • 谢文辉
展开
  • 华东师范大学 物理与电子科学学院, 上海 200241

收稿日期: 2019-01-22

  网络出版日期: 2020-01-13

基金资助

国家自然科学基金(51572086,11574084,11774091)

Atomic distortion in CrN: A first-principle investigation

  • WANG Qianqian ,
  • ZHAO Zhenjie ,
  • LI Xin ,
  • XIE Wenhui
Expand
  • School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2019-01-22

  Online published: 2020-01-13

摘要

采用第一性原理计算方法研究了氮化铬(Chromium Nitride,CrN)的正交(Orthorhombic)相,发现其中的Cr原子和N原子均沿着正交结构的[100]方向移动,均偏离其高对称位置,且在结构中形成锯齿形的原子链,这个现象在过去的计算研究中一直没有被考虑.结果表明,在正交相中,原子位移可以使总能降低0.125 eV,因而更加稳定;考虑原子位移后,计算得到的晶格长度等结构参数与实验符合得更好;计算得到的体弹性模量K0数值明显减小,更加接近实验值.正交相的磁基态是层间不对称的反铁磁结构,原子位移是由正交相中层间不对称的磁应力所驱动,同时原子位移可以补偿层间的磁相互作用力.此外,原子位移不改变CrN的莫特绝缘体特性,但是会轻微减小带隙.

本文引用格式

王倩倩 , 赵振杰 , 李欣 , 谢文辉 . CrN中原子位移的第一性原理计算研究[J]. 华东师范大学学报(自然科学版), 2020 , 2020(1) : 58 -66 . DOI: 10.3969/j.issn.1000-5641.201922002

Abstract

First principle calculations indicate that Cr and N atoms in the orthorhombic phase of CrN (Chromium Nitride) tend to shift from their ideal positions along the [100] direction. This shift can induce zigzag Cr-N-Cr chains in the orthorhombic phase; these atomic distortions have not been taken into account in previous studies. The atomic distortions may decrease the total energy of the orthorhombic phase by 0.125 eV/formula unit and make the structure more stable. Lattice constants, moreover, may also be in better agreement with experiment results when considering these atomic distortions. Further, the bulk modulus K0 decreases significantly when considering the atomic distortions and is closer to the experimental value. The atomic distortions are induced by the asymmetric magnetic forces between asymmetric magnetic layers in the special antiferromagnetic order of the orthorhombic phase, which compensates for the magnetic forces between the layers. The atomic distortions would not change the Mott-insulator property of the orthorhombic phase but may reduce the band gap slightly.

参考文献

[1] ZHONG L, LONG Y J, HAN X. Preparation and wear resistance properties of CrN coating by magnetron sputtering on tool surface[J]. Surface Technology, 2018, 47(10):151-156.
[2] HANG S, SUN D, FU Y Q, et al. Toughness measurement of thin films:A critical review[J]. Surface & Coatings Technology, 2005, 198(1/2/3):74-84.
[3] BROWNE J D, LIDDELL P R, STREET R, et al. An investigation of the antiferromagnetic transition of CrN[J]. Physica Status Solidi A, 1970, 1(4):715-723.
[4] CONSTANTIN C, HAIDER M B, INGRAM D, et al. Metal/semiconductor phase transition in chromium nitride(001) grown by rf-plasma-assisted molecular-beam epitaxy[J]. Applied Physics Letters, 2004, 85(26):6371-6373. DOI:10.1063/1.1836878.
[5] GALL D, SHIN C S, HAASCH R T, et al. Band gap in epitaxial NaCl-structure CrN(001) layers[J]. Journal of Applied Physics, 2002, 91(9):5882-5886. DOI:10.1063/1.1466528.
[6] HERLE P S, HEGDE M S, VASATHACHARYA N Y, et al. Synthesis of TiN, VN, and CrN from ammonolysis of TiS2, VS2, and Cr2S3[J]. Journal of Solid State Chemistry, 1997, 134(1):120-127. DOI:10.1006/jssc.1997.7554.
[7] CORLISS L M, ELLIOTT N, HASTINGS J M. Antiferromagnetic structure of CrN[J]. Physical Review, 1960, 117(4):929-935.
[8] FILIPPETTI A, HILL N A. Magnetic stress as a driving force of structural distortions:The case of CrN[J]. Physical Review Letters, 2000, 85(24):5166-5169. DOI:10.1103/PhysRevLett.85.5166.
[9] FILIPPETTI A, PICKETT W E, KLEIN B M. Competition between magnetic and structural transitions in CrN[J]. Physical Review B, 1999, 59(10):7043-7050. DOI:10.1103/PhysRevB.59.7043.
[10] HERWADKAR A, LAMBRECHT W R L. Electronic structure of CrN:A borderline Mott insulator[J]. Physical Review B, 2009, 79(3):035125. DOI:10.1103/PhysRevB.79.035125.
[11] KRESSE G, HAFNER J. Ab initio molecular dynamics for open-shell transition metals[J]. Physical Review B, 1993, 48(17):13115-13118. DOI:10.1103/PhysRevB.48.13115.
[12] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1):558-561. DOI:10.1103/PhysRevB.47.558.
[13] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11169-11186. DOI:10.1103/PhysRevB.54.11169.
[14] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple (vol 77, pg 3865, 1996)[J]. Physical Review Letters, 1997, 78(7):1396-1396.
[15] ANISIMOV V I, GUNNARSSON O. Density-functional calculation of effective Coulomb interactions in metals[J]. Physical Review B, 1991, 43(10):7570-7574. DOI:10.1103/PhysRevB.43.7570.
[16] ANISIMOV V I, ZAANEN J, ANDERSEN O K. Band theory and Mott insulators:Hubbard U instead of Stoner I[J]. Physical Review B, 1991, 44(3):943-954. DOI:10.1103/PhysRevB.44.943.
[17] LIECHTENSTEIN A I, ANISIMOV V I, ZAANEN J. Density-functional theory and strong interactions:orbital ordering in Mott-Hubbard insulators[J]. Physical Review B, 1995, 52(8):R5467-R5470. DOI:10.1103/PhysRevB.52.R5467.
[18] PETUKHOV A G, MAZIN I I, CHIONCEL L, et al. Correlated metals and the LDA+U method[J]. Physical Review B, 2003, 67(15):153106.
[19] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12):5188-5192. DOI:10.1103/PhysRevB.13.5188.
[20] FRANK W, lSASSER C E, FAHNLE M. Ab initio force-constant method for phonon dispersions in alkali metals[J]. Physical Review Letters, 1995, 74(10):1791-1794. DOI:10.1103/PhysRevLett.74.1791.
[21] BLAHA P, SCHWARZ K, MADSEN G K H, et al. WIEN2k:An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (User's Guide, WIEN2k_14.2(Release 10/15/2014)[M]. Wien, Austria:[s.n.], 2018.
[22] SCHWARZ K, BLAHA P, MADSEN G K H. Electronic structure calculations of solids using the WIEN2k package for material sciences[J]. Computer Physics Communications, 2002, 147(1/2):71-76. DOI:10.1016/S0010-4655(02)00206-0.
[23] ANDERSEN O K, SAHA-DASGUPTA T. Muffin-tin orbitals of arbitrary order[J]. Physical Review B, 2000, 62(24):16219-16222. DOI:10.1103/PhysRevB.62.R16219.
[24] CHEN H Y, TSAI C J, LU F H. The Young's modulus of chromium nitride films[J]. Surface & Coatings Technology, 2004, 184(1):69-73.
[25] ALLING B, MARTEN T, ABRIKOSOV I A. Questionable collapse of the bulk modulus in CrN[J]. Nature Materials, 2010, 9(4):283-284. DOI:10.1038/nmat2722.
[26] LIN H, ZENG Z. Structural, electronic, and magnetic properties of CrN under high pressure[J]. Chinese Physics B, 2011, 20(7):077102. DOI:10.1088/674-1056/20/7/077102.
[27] RIVADULLA F, BANOBRE-LOPEZ M, QUINTELA C X, et al. Reduction of the bulk modulus at high pressure in CrN[J]. Nature Materials, 2009, 8(12):947-951. DOI:10.1038/nmat2549.
[28] COHEN R E, MAZIN I I, ISAAK D G. Magnetic collapse in transition metal oxides at high pressure:Implications for the Earth[J]. Science, 1997, 275(5300):654-657. DOI:10.1126/science.275.5300.654.
文章导航

/