物理学与电子学

Kerr-AdS黑洞的复杂度

  • 丁郁琛 ,
  • 王焘
展开
  • 华东师范大学 物理与电子科学学院, 上海 200241

收稿日期: 2019-03-01

  网络出版日期: 2020-01-13

基金资助

国家自然科学基金(91536218)

The complexity of Kerr-AdS black holes

  • DING Yuchen ,
  • WANG Tao
Expand
  • School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2019-03-01

  Online published: 2020-01-13

摘要

规范/引力对偶为人们提供了一个研究物理的全新视角.由规范/引力对偶可知,边界上的共形场论等价于其内部的Anti-de Sitter时空.这个对偶为人们研究边界共形场论带来了极大的方便.最近,Susskind团队提出了一个复杂度/作用量对偶假设:认为黑洞边界上态的量子计算复杂度等价于其在Wheeler-DeWitt片中的作用量.复杂度代表了进行量子计算的困难程度,这意味着黑洞也许与量子计算有联系,这也加深了人们对黑洞的认识.基于这个假设,考虑类光关节项的贡献,改进了Susskind团队的原有方案,更精确地计算了Kerr-AdS黑洞的Wheeler-DeWitt片的作用量增长率,最终得到了边界态复杂度的增长率.

本文引用格式

丁郁琛 , 王焘 . Kerr-AdS黑洞的复杂度[J]. 华东师范大学学报(自然科学版), 2020 , 2020(1) : 76 -82 . DOI: 10.3969/j.issn.1000-5641.201922004

Abstract

Gauge/gravity duality has shed light on physics research. It reveals that conformal field theory on the boundary is equivalent to the bulk of anti-de Sitter space-time, which brings us great convenience for studying the conformal field on the boundary. Recently, Susskind et al. proposed a conjecture for complexity/action duality, which states that the quantum computational complexity of the boundary state of a black hole is equivalent to the action in a Wheeler-DeWitt patch. The complexity represents the difficulty of performing quantum computing, which means that black holes may be linked to quantum computing. This provides us with deeper insights on black holes. Based on this conjecture and taking the contribution of null joints into consideration, we improve the original method of Susskind et al., and recalculate the action growth rate of the Wheeler-DeWitt patch of Kerr-AdS black holes more accurately. Finally, we get the complexity of the state on the boundary of Kerr-AdS black hole space-time.

参考文献

[1] MALDACENA J. The large-N limit of superconformal field theories and supergravity[J]. International journal of Theoretical Physics, 1999, 38(4):1113-1133.
[2] MALDACENA, J. Eternal black holes in anti-de Sitter[J]. Journal of High Energy Physics, 2003, JHEP04(2003):Article number 21.
[3] SUSSKIND L. Computational complexity and black hole horizons[J]. Fortsch Phys, 2016, 64(1):24-43. DOI:10.1002/prop.201500092.
[4] SUSSKIND L. Addendum to computational complexity and black[J]. Fortsch Phys, 2016, 64(1):44-48.
[5] STANFORD D, SUSSKIND L. Complexity and shock wave geometries[J]. Physical Review D, 2014, 90:126007. DOI:10.1103/PhysRevD.90.126007.
[6] BROWN A R, ROBERTS D A, SUSSKIND L, et al. Complexity, action, and black holes[J]. Physical Review D, 2016, 93:086006. DOI:10.1103/PhysRevD.93.086006.
[7] BROWN A R, ROBERTS D A, SUSSKIND L, et al. Holographic complexity equals bulk action?[J]. Physical Review Letters, 2016, 116:191301. DOI:10.1103/PhysRevLett.116.191301.
[8] LLOYD S. Ultimate physical limits to computation[J]. Nature, 2000, 406:1047-1054. DOI:10.1038/35023282.
[9] LEHNER L, MYERS R C, POISSON E, et al. Gravitational action with null boundaries[J]. Physical Review D, 2016, 94:084046. DOI:10.1103/PhysRevD.94.084046.
[10] CAI R G, RUAN S M, WANG S J, et al. Action growth for AdS black holes[J]. Journal of High Energy Physics, 2016, JHEP09(2016):Article number 161. DOI:10.1007/JHEP09(2016)161.
文章导航

/