物理学与电子学

冷分子静电曲面反射镜

  • 李静 ,
  • 杨正海 ,
  • 侯顺永 ,
  • 魏斌 ,
  • 林钦宁 ,
  • 杨涛 ,
  • 印建平
展开
  • 华东师范大学 精密光谱科学与技术国家重点实验室, 上海 200062

收稿日期: 2019-05-09

  网络出版日期: 2020-03-16

基金资助

国家自然科学基金(91536218,11034002,11274114,11504112,11874151);国家重点基础研究发展计划(2011CB921602);中央高校基本科研基金;上海市浦江人才计划(18PJ1403100);上海市自然科学基金(18ZR1412700);上海高校特聘教授(东方学者)岗位计划

Electrostatic curved mirror of cold molecules

  • LI Jing ,
  • YANG Zhenghai ,
  • HOU Shunyong ,
  • WEI Bin ,
  • LIN Qinning ,
  • YANG Tao ,
  • YIN Jianping
Expand
  • State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China

Received date: 2019-05-09

  Online published: 2020-03-16

摘要

分子(原子)平面反射镜作为重要的光学元件之一, 被广泛应用于分子(原子)囚禁、储存、导引等实验中; 但由于其仅能实现粒子纵向速度改变而在横向上没有聚焦作用, 从而导致了粒子容易发散. 以重氨(ND3)分子为例, 提出了一种结构简洁、紧凑的微型静电曲面反射镜, 通过理论计算并与Monte-Carlo模拟, 验证了其在改变分子运动方向的同时能够实现横向聚束, 进而大大增加反射分子数目. 因此, 该类反射镜可广泛用于分子操控与装载以及构成各类分子腔体等领域.

本文引用格式

李静 , 杨正海 , 侯顺永 , 魏斌 , 林钦宁 , 杨涛 , 印建平 . 冷分子静电曲面反射镜[J]. 华东师范大学学报(自然科学版), 2020 , 2020(2) : 64 -69 . DOI: 10.3969/j.issn.1000-5641.201922014

Abstract

As one of the most important optical instruments, molecular (atomic) reflecting mirrors have been broadly applied in experiments for trapping, loading, and guiding of molecules (atoms); however, given that the mirrors can only change the velocity of particles in the longitudinal direction, there is no focusing capability in the lateral direction and particles can subsequently diverge. Using ND3 as an example, we propose a compact micro electrostatic curved mirror to address this issue; we show via theoretical calculations and Monte-Carlo simulations that the proposed mirror can both direct a beam of molecules and achieve transverse bunching of molecules. This kind of reflecting mirror can be used in an extensive range of optical applications for manipulating or loading molecules, composing molecular cavities, and so forth.

参考文献

[1] WALLIS H, DALIBARD J, COHEN-TANNOUDJI C. Trapping atoms in a gravitational cavity[J]. Applied Physics B, 1992, 54(5):407-411. DOI:10.1007/BF00325387.
[2] HUGHES I G, BARTON P A, ROACH T M, et al. Atom optics with magnetic surface:I. Storage of cold atoms in a curved "floppy disk"[J]. Journal of Physics B, 1997, 30:647-657. DOI:10.1088/0953-4075/30/3/018.
[3] HINDS E A, HUGHES I G. Magnetic atom optics:mirrors, guides, traps, and chips for atoms[J]. Journal of Physics D, 1999, 32(18):119-146.
[4] WANG Y J, ANDERSON D Z, BRIGHT V M, et al. Atom Michelson interferometer on a chip using a Bose-Einstein condensate[J]. Physical Review Letters, 2005, 94:090405. DOI:10.1103/PhysRevLett.94.090405.
[5] SEIFERT W, ADAMS C S, BALYKIN V I, et al. Reflection of metastable argon atoms from an evanescent wave[J]. Physical Review A, 1994, 49(5):3814-3823. DOI:10.1103/PhysRevA.49.3814.
[6] SEIFERT W, KAISER R, ASPECT A, et al. Reflection of atoms from a dielectric wave guide[J]. Optics Communications, 1994, 111(5/6):566-576. DOI:10.1016/0030-4018(94)90536-3.
[7] LABEYRIE G, LANDRAGIN A, VON ZANTHIER J, et al. Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors[J]. Quantum and Semiclassical Optics:Journal of the European Optical Society Part B, 1996, 8(3):603-627. DOI:10.1088/1355-5111/8/3/022.
[8] ZHENG P, GAO W J, YIN J P. Novel atomic mirror with a blue-detuned semi-Gaussian beam[J]. Chinese Physics Letters, 2003, 20(3):379-382. DOI:10.1088/0256-307X/20/3/318.
[9] SABA C V, BARTON P A, BOSHIER M G, et al. Reconstruction of a cold atom cloud by magnetic focusing[J]. Physical Review Letters, 1999, 82(3):468-471. DOI:10.1103/PhysRevLett.82.468.
[10] SIDOROV A I, MCLEAN R J, ROWLANDS W J, et al. Specular reflection of cold caesium atoms from a magnetostatic mirror[J]. Quantum and Semiclassical Optics:Journal of the European Optical Society Part B, 1996, 8(3):713-725. DOI:10.1088/1355-5111/8/3/030.
[11] SIDOROV A I, LAU D C, OPAT G I, et al. Magnetostatic optical elements for laser-cooled atoms[J]. Laser Physics, 1998, 8(3):642-645.
[12] DRNDIC M, JOHNSON K S, THYWISSEN J H, et al. Micro-electromagnets for atom manipulation[J]. Applied Physics Letters, 1998, 72(22):2906-2908. DOI:10.1063/1.121455.
[13] JOHNSON K S, DRNDIC M, THYWISSEN J H, et al. Atomic deflection using an adaptive microelectromagnet mirror[J]. Physical Review Letters, 1998, 81(6):1137-1141. DOI:10.1103/PhysRevLett.81.1137.
[14] LAU D C, SIDOROV A I, OPAT G I, et al. Reflection of cold atoms from an array of current-carrying wires[J]. The European Physical Journal D, 1999, 5(2):193-199. DOI:10.1007/s100530050244.
[15] VLIEGEN E, MERKT F. Normal-incidence electrostatic Rydberg atom mirror[J]. Physical Review Letters, 2006, 97:033002. DOI:10.1103/PhysRevLett.97.033002.
[16] SCHULZ S A, BETHLEM H L, VAN VELDHOVEN J, et al. Microstructured switchable mirror for polar molecules[J]. Physical Review Letters, 2004, 93(2):020406. DOI:10.1103/PhysRevLett.93.020406.
[17] KALLUSH S, SEGEV B, CÔTÉ R, et al. Evanescent-wave mirror for ultracold diatomic polar molecules[J]. Physical Review Letters, 2005, 95(16):163005. DOI:10.1103/PhysRevLett.95.163005.
[18] METSÄLÄ M, GILIJAMAE J J, HOEKSTRA S, et al. Reflection of OH molecules from magnetic mirrors[J]. New Journal of Physics, 2008, 10:053018. DOI:10.1088/1367-2630/10/5/053018.
[19] FLÓREZ A I G, MEEK S A, HAAK H, et al. An electrostatic elliptical mirror for neutral polar molecules[J]. Physical Chemistry Chemical Physics, 2011, 13:18830-18834. DOI:10.1039/c1cp20957d.
[20] AMINOFF C G, STEANE A M, BOUYER P, et al. Cesium atoms bouncing in a stable gravitational cavity[J]. Physical Review Letters, 1993, 71(19):3083-3086. DOI:10.1103/PhysRevLett.71.3083.
[21] LISTON G J, TAN S M, WALLS D F. Quantum dynamics of bouncing atoms in a stable gravitational cavity[J]. Applied Physics B, 1995, 60(2/3):211-227.
[22] BALYKIN V I, LETOKHOV V S. Atomic cavity with light-induced mirrors[J]. Applied Physics B, 1989, 48(6):517-523.
[23] 许雪艳, 侯顺永, 印建平. 一种可控的Ioffe型冷分子表面微电阱[J]. 物理学报, 2018, 67(11):113701. DOI:10.7498/aps.67.20180206
文章导航

/