物理学与电子学

洛伦兹对称破缺与宇宙加速膨胀

  • 翟韩豫 ,
  • 薛迅
展开
  • 1. 华东师范大学 物理与电子科学学院, 上海 200241;
    2. 新疆大学 理论物理中心, 乌鲁木齐 830046

收稿日期: 2019-04-23

  网络出版日期: 2020-03-16

基金资助

国家自然科学基金(11435005,11775080,11865016)

Lorentz symmetry violation and accelerated expansion of the universe

  • ZHAI Hanyu ,
  • XUE Xun
Expand
  • 1. School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China;
    2. Center for Theoretical Physics, Xinjiang University, Urumqi 830046, China

Received date: 2019-04-23

  Online published: 2020-03-16

摘要

1998年的超新星观测表明当今宇宙正在加速膨胀. 暗能量是指宇宙加速膨胀的宇宙介质. 正的宇宙学常数Λ是暗能量的重要候选者, 但导致宇宙加速膨胀的原因并非Λ莫属. 洛伦兹不变性是物理学最严格的对称性之一, 然而所有的量子引力理论都预言了洛伦兹对称性的破缺. 基于大尺度洛伦兹破缺(Large-Scale Lorentz Violation, LSLV)的宇宙学模型, 讨论了有效引力理论修正的Friedmann方程, 由此可以得到, 大尺度上的洛伦兹破缺和宇宙学常数项的综合效应会产生后期观测到的宇宙加速膨胀.

本文引用格式

翟韩豫 , 薛迅 . 洛伦兹对称破缺与宇宙加速膨胀[J]. 华东师范大学学报(自然科学版), 2020 , 2020(2) : 83 -89 . DOI: 10.3969/j.issn.1000-5641.201922011

Abstract

The supernova observations of 1998 show that the universe is accelerating and expanding. Dark energy refers to the cosmic content of the universe's accelerated expansion. The positive cosmological constant Λ is an important factor for dark energy, but the cause of the accelerated expansion of the universe is not Λ. Lorentz invariance is the most accurate symmetry in nature, but all quantum gravitational theories predict the breakup of Lorentz symmetry. Based on the cosmological model of a large-scale Lorentz violation(LSLV), the Friedmann equation modified by effective gravitational theory is discussed and the effect of a large-scale Lorentz violation combined with a cosmological constant term can produce the observed acceleration of the universe.

参考文献

[1] FILIPPENKO A V, RIESS A G. Results from the high-z supernova search team[J]. Physics Reports, 1998, 307(1/2/3/4):31-44.
[2] RIESS A G, FILIPPENKO A V, CHALLIS P, et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant[J]. The Astronomical Journal, 1998, 116(3):1009-1038. DOI:10.1086/300499.
[3] PERLMUTTER S, ALDERING G, GOLDHABER G, et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae[J]. The Astrophysical Journal, 1999, 517(2):565-586.
[4] ADE P A R, AGHANIM N, ARMITAGE-CAPLAN C, et al. Planck 2013 results. XXIII. Isotropy and statistics of the CMB[J]. Astronomy and Astrophysics, 2014, 571:Article number A23. DOI:10.1051/0004-6361/201321534.
[5] ADE P A R, AGHANIM N, ALVES M I R, et al. Planck 2013 results. I. Overview of products and scientific results[J]. Astronomy and Astrophysics, 2014, 571:Article number A1. DOI:10.1051/0004-6361/201321529.
[6] FRANCIS M. First Planck results:the Universe is still weird and interesting[R/OL]. (2013-03-22)[2019-04-21]. https://arstechnica.com/science/2013/03/first-planck-results-the-universe-is-still-weird-and-interesting.
[7] COLEMAN S R, GLASHOW S L. High-energy tests of Lorentz invariance[J]. Physics Review D, 1999, 59:116008. DOI:10.1103/PhysRevD.59.116008.
[8] COLLADAY D, KOSTELECKY V A. Lorentz-violating extension of the standard model[J]. Physics Review D, 1998, 58:116002. DOI:10.1103/PhysRevD.58.116002.
[9] SHEN J Y, XUE X. Large scale Lorentz violation gravity and dark energy[J/OL]. arXiv, 2018:1802.03502.(2018-10-13)[2019-04-21]. https://arxiv.org/abs/1802.03502.
[10] WU Y W, XUE X, YANG L X, et al. The effective gravitational theory at large scale with Lorentz violation[J/OL]. arXiv, 2015:1510.00814. (2015-10-18)[2019-04-21]. https://arxiv.org/abs/1510.00814.
[11] 魏文叶, 申佳音, 薛迅, 等. 大尺度有效引力的规范引力模型[J]. 物理学报, 2017, 66:130301. DOI:10.7498/aps.66.130301
[12] 杨礼想, 吴奕暐, 魏文叶, 等. 大尺度有效引力理论与洛伦兹破缺[J]. 科学通报, 2017, 62(9):944-950
[13] 吴奕暐, 薛迅. SIM(2)引力规范理论[J]. 华东师范大学学报 (自然科学版), 2016(3):76-83
[14] DESER S, WOODARD R P. Nonlocal cosmology II-Cosmic acceleration without fine tuning or dark energy[J/OL]. arXiv, 2019:1902.08075.(2019-02-21)[2019-05-01]. https://arxiv.org/abs/1902.08075.
[15] RAJVANSHI M P, CHAKRABORTY T, BAGLA J S. Gravitational collapse and structure formation in an expanding universe with dark energy[J/OL]. arXiv, 2019:1803.04267.(2019-01-13)[2019-05-01]. https://arxiv.org/abs/1803.04267.
[16] DINDA B R. A model independent parametrization of the late time cosmic acceleration:constraints on the parameters from recent observations[J/OL]. arXiv, 2018:1904.10418.(2018-04-23)[2019-05-01]. https://arxiv.org/abs/190410418.//arxiv.org/abs/190410418.
[17] DIMOPOULOS K, MARKKANEN T. Dark energy as a remnant of inflation and electroweak symmetry breaking[J/OL]. arXiv, 2018:1807.04359. (2018-12-04)[2019-05-01]. https://arxiv.org/abs/1807.04359.
[18] DIMAKIS N, PALIATHANASIS A, TERZIS P A, et al. Cosmological solutions in multiscalar field theory[J/OL]. arXiv, 2019:1904.09713.(2019-04-22)[2019-05-01].https://arxiv.org/abs/1904.09713.
[19] ZHANG H C, XU L X. Late-time acceleration and inflation in a Poincaré gauge cosmological model[J/OL]. arXiv, 2019:1904.03545.(2019-04-09)[2019-05-01]. https://arxiv.org/abs/1904.03545.
文章导航

/