[1] FILIPPENKO A V, RIESS A G. Results from the high-z supernova search team[J]. Physics Reports, 1998, 307(1/2/3/4):31-44. [2] RIESS A G, FILIPPENKO A V, CHALLIS P, et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant[J]. The Astronomical Journal, 1998, 116(3):1009-1038. DOI:10.1086/300499. [3] PERLMUTTER S, ALDERING G, GOLDHABER G, et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae[J]. The Astrophysical Journal, 1999, 517(2):565-586. [4] ADE P A R, AGHANIM N, ARMITAGE-CAPLAN C, et al. Planck 2013 results. XXIII. Isotropy and statistics of the CMB[J]. Astronomy and Astrophysics, 2014, 571:Article number A23. DOI:10.1051/0004-6361/201321534. [5] ADE P A R, AGHANIM N, ALVES M I R, et al. Planck 2013 results. I. Overview of products and scientific results[J]. Astronomy and Astrophysics, 2014, 571:Article number A1. DOI:10.1051/0004-6361/201321529. [6] FRANCIS M. First Planck results:the Universe is still weird and interesting[R/OL]. (2013-03-22)[2019-04-21]. https://arstechnica.com/science/2013/03/first-planck-results-the-universe-is-still-weird-and-interesting. [7] COLEMAN S R, GLASHOW S L. High-energy tests of Lorentz invariance[J]. Physics Review D, 1999, 59:116008. DOI:10.1103/PhysRevD.59.116008. [8] COLLADAY D, KOSTELECKY V A. Lorentz-violating extension of the standard model[J]. Physics Review D, 1998, 58:116002. DOI:10.1103/PhysRevD.58.116002. [9] SHEN J Y, XUE X. Large scale Lorentz violation gravity and dark energy[J/OL]. arXiv, 2018:1802.03502.(2018-10-13)[2019-04-21]. https://arxiv.org/abs/1802.03502. [10] WU Y W, XUE X, YANG L X, et al. The effective gravitational theory at large scale with Lorentz violation[J/OL]. arXiv, 2015:1510.00814. (2015-10-18)[2019-04-21]. https://arxiv.org/abs/1510.00814. [11] 魏文叶, 申佳音, 薛迅, 等. 大尺度有效引力的规范引力模型[J]. 物理学报, 2017, 66:130301. DOI:10.7498/aps.66.130301 [12] 杨礼想, 吴奕暐, 魏文叶, 等. 大尺度有效引力理论与洛伦兹破缺[J]. 科学通报, 2017, 62(9):944-950 [13] 吴奕暐, 薛迅. SIM(2)引力规范理论[J]. 华东师范大学学报 (自然科学版), 2016(3):76-83 [14] DESER S, WOODARD R P. Nonlocal cosmology II-Cosmic acceleration without fine tuning or dark energy[J/OL]. arXiv, 2019:1902.08075.(2019-02-21)[2019-05-01]. https://arxiv.org/abs/1902.08075. [15] RAJVANSHI M P, CHAKRABORTY T, BAGLA J S. Gravitational collapse and structure formation in an expanding universe with dark energy[J/OL]. arXiv, 2019:1803.04267.(2019-01-13)[2019-05-01]. https://arxiv.org/abs/1803.04267. [16] DINDA B R. A model independent parametrization of the late time cosmic acceleration:constraints on the parameters from recent observations[J/OL]. arXiv, 2018:1904.10418.(2018-04-23)[2019-05-01]. https://arxiv.org/abs/190410418.//arxiv.org/abs/190410418. [17] DIMOPOULOS K, MARKKANEN T. Dark energy as a remnant of inflation and electroweak symmetry breaking[J/OL]. arXiv, 2018:1807.04359. (2018-12-04)[2019-05-01]. https://arxiv.org/abs/1807.04359. [18] DIMAKIS N, PALIATHANASIS A, TERZIS P A, et al. Cosmological solutions in multiscalar field theory[J/OL]. arXiv, 2019:1904.09713.(2019-04-22)[2019-05-01].https://arxiv.org/abs/1904.09713. [19] ZHANG H C, XU L X. Late-time acceleration and inflation in a Poincaré gauge cosmological model[J/OL]. arXiv, 2019:1904.03545.(2019-04-09)[2019-05-01]. https://arxiv.org/abs/1904.03545.
|