化学化工

交联聚乙烯醇膜制备优化及在电吸附中的应用

  • 陈玲 ,
  • 毛疏笛 ,
  • 张奕 ,
  • 李哲 ,
  • 朴贤卿 ,
  • 孙卓 ,
  • 赵然
展开
  • 华东师范大学 物理与电子科学学院, 上海 200062

收稿日期: 2019-01-28

  网络出版日期: 2020-03-16

基金资助

上海市青年科技英才扬帆计划(16YF1403000);国家自然科学基金青年基金(21606085)

Preparation and application of crosslinked polyvinyl alcohol in electrosorption

  • CHEN Ling ,
  • MAO Shudi ,
  • ZHANG Yi ,
  • LI Zhe ,
  • PIAO Xianqing ,
  • SUN Zhuo ,
  • ZHAO Ran
Expand
  • School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China

Received date: 2019-01-28

  Online published: 2020-03-16

摘要

采用化学交联法制备聚乙烯醇(PVA)复合膜, 研究磺基琥珀酸(SSA)交联聚乙烯醇薄膜的电容去离子行为. 磺基琥珀酸作为一种交联剂和亲水基团的给体, 可以很好地应用于聚乙烯醇膜的改性. 详细研究了制备工艺(交联剂含量, 交联温度)对复合膜电容去离子性能的影响, 并进行对比实验, 将电容去离子系统(CDI)(仅使用活性炭电极)和采用了PVA与SSA交联的膜电容去离子系统(MCDI)(电极表面覆盖离子交换膜)分别进行吸脱附运行操作. 结果表明: 当交联剂SSA的质量分数为5%, 交联温度为100 ℃时, 交联聚乙烯醇复合膜在电容去离子中的应用使电极的吸附量增强了15%左右, 电荷效率平均提高了25%.

本文引用格式

陈玲 , 毛疏笛 , 张奕 , 李哲 , 朴贤卿 , 孙卓 , 赵然 . 交联聚乙烯醇膜制备优化及在电吸附中的应用[J]. 华东师范大学学报(自然科学版), 2020 , 2020(2) : 120 -130 . DOI: 10.3969/j.issn.1000-5641.201931003

Abstract

Sulfosuccinic acid (SSA) can be used as a crosslinking agent and a donor of a hydrophilic group when fabricating a cation exchange membrane. In this study, SSA was crosslinked with polyvinyl alcohol to form a cation exchange membrane for a capacitive deionization system. In this study, the impact of manufacturing parameters (i.e., crosslinker content, crosslinking temperature) on the deionization performance of a composite membrane were investigated in detail. A comparison was made between a capacitive deionization system (CDI) without an ion exchange membrane and a membrane capacitive deionization system (MCDI) coated with a PVA/SSA layer. The results show that the adsorption capacity and charge efficiency can be enhanced by 15% and 25%, respectively, with the PVA/SSA membrane layer; furthermore, the optimal mass fraction of SSA is 5%, and the optimal crosslinking temperature is 100 ℃.

参考文献

[1] 王熹, 王湛, 杨文涛, 等. 中国水资源现状及其未来发展方向展望 [J]. 环境工程, 2014, 32(7):1-5
[2] OKI T, KANAE S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790):1068-1072. DOI:10.1126/science.1128845.
[3] KUMMU M, GUILLAUME J H, DE MOEL H, et al. The world's road to water scarcity:Shortage and stress in the 20th century and pathways towards sustainability[J]. Scientific Reports, 2016, 6(1):38495. DOI:10.1038/srep38495.
[4] PORADA S, ZHAO R, VAN DER WAL A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8):1388-1442. DOI:10.1016/j.pmatsci.2013.03.005.
[5] BROGIOLI D. Extracting renewable energy from a salinity difference using a capacitor[J]. Physical Review Letters, 2009, 103(5):058501. DOI:10.1103/PhysRevLett.103.058501.
[6] BAZANT M Z, THORNTON K, AJDARI A. Diffuse-charge dynamics in electrochemical systems[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(2):21506. DOI:10.1103/PhysRevE.70.021506.
[7] 尹广军, 陈福明. 电容去离子研究进展 [J]. 水处理技术, 2003(2):63-66. DOI:10.3969/j.issn.1000-3770.2003.02.001
[8] BIKERMAN J J. Structure and capacity of electrical double layer[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2009, 33(220):384-397.
[9] BIESHEUVEL P M. Thermodynamic cycle analysis for capacitive deionization[J]. Journal of Colloid and Interface Science, 2009, 332(1):258-264. DOI:10.1016/j.jcis.2008.12.018.
[10] BIESHEUVEL P M, VAN LIMPT B, VAN DER WAL A. Dynamic adsorption/desorption process model for capacitive deionization[J]. The Journal of Physical Chemistry C, 2009, 113(14):5636-5640. DOI:10.1021/jp809644s.
[11] WANG G, QIAN B, DONG Q, et al. Highly mesoporous activated carbon electrode for capacitive deionization[J]. Separation and Purification Technology, 2013, 103(103):216-221.
[12] PORADA S, BORCHARDT L, OSCHATZ M, et al. Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization[J]. Energy & Environmental Science, 2013, 6(12):3700.
[13] NADAKATTI S, TENDULKAR M, KADAM M. Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology[J]. Desalination, 2011, 268(1/2/3):182-188.
[14] ZOU L, MORRIS G, QI D. Using activated carbon electrode in electrosorptive deionisation of brackish water[J]. Desalination, 2008, 225(1/2/3):329-340.
[15] YANG C M, CHOI W H, NA B K, et al. Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes[J]. Desalination, 2005, 174(2):125-133. DOI:10.1016/j.desal.2004.09.006.
[16] LI L, ZOU L, SONG H, et al. Ordered mesoporous carbons synthesized by a modified sol-gel process for electrosorptive removal of sodium chloride[J]. Carbon, 2009, 47(3):775-781. DOI:10.1016/j.carbon.2008.11.012.
[17] FARMER J C, FIX D V, MACK G V. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes[J]. Journal of The Electrochemical Society, 1996, 143(1):159-169. DOI:10.1149/1.1836402.
[18] KIM D, GUIVER M, NAM S, et al. Preparation of ion exchange membranes for fuel cell based on crosslinked poly(vinyl alcohol) with poly(styrene sulfonic acid-co-maleic acid)[J]. Journal of Membrane Science, 2006, 281(1/2):156-162.
[19] KIM Y J, CHOI J H. Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane[J]. Separation and Purification Technology, 2010, 71(1):70-75. DOI:10.1016/j.seppur.2009.10.026.
[20] KIM Y J, CHOI J H. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer[J]. Water Research, 2010, 44(3):990-996. DOI:10.1016/j.watres.2009.10.017.
[21] LEE J B, PARK K K, EUM H M, et al. Desalination of a thermal power plant wastewater by membrane capacitive deionization[J]. Desalination, 2006, 196(1/2/3):125-134.
[22] KIM T, DYKSTRA J E, PORADA S, et al. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage[J]. Journal of Colloid and Interface Science, 2015, 446:317-326. DOI:10.1016/j.jcis.2014.08.041.
[23] ZHAO R, SATPRADIT O, RIJNAARTS H H, et al. Optimization of salt adsorption rate in membrane capacitive deionization[J]. Water Research, 2013, 47(5):1941-1952. DOI:10.1016/j.watres.2013.01.025.
[24] RHIM J, PARK H, LEE C, et al. Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group:Proton and methanol transport through membranes[J]. Journal of Membrane Science, 2004, 238(1/2):143-151.
[25] LEBRUN L, DA SILVA E, METAYER M. Elaboration of ion-exchange membranes with semi-interpenetrating polymer networks containing poly(vinyl alcohol) as polymer matrix[J]. Journal of Applied Polymer Science, 2002, 84(8):1572-1580. DOI:10.1002/app.10420.
[26] KIM J H, KIM J Y, LEE Y M, et al. Properties and swelling characteristics of cross-linked poly(vinyl alcohol)/chitosan blend membrane[J]. Journal of Applied Polymer Science, 1992, 45(10):1711-1717. DOI:10.1002/app.1992.070451004.
[27] KRUMOVA M, L PEZ D, BENAVENTE R, et al. Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol)[J]. Polymer, 2000, 41(26):9265-9272. DOI:10.1016/S0032-3861(00)00287-1.
[28] 闫卫东, 姚加, 谢学鹏, 等. 用电动势法测定NaBr在甲醇-水体系中298.15 K下的离子迁移数 [J]. 化学物理学报, 1996(6):552-558
[29] NAGARALE R K, SHAHI V K, THAMPY S K, et al. Studies on electrochemical characterization of polycarbonate and polysulfone based heterogeneous cation-exchange membranes[J]. Reactive & Functional Polymers, 2004, 61(1):131-138.
文章导航

/