[1] 王熹, 王湛, 杨文涛, 等. 中国水资源现状及其未来发展方向展望 [J]. 环境工程, 2014, 32(7):1-5 [2] OKI T, KANAE S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790):1068-1072. DOI:10.1126/science.1128845. [3] KUMMU M, GUILLAUME J H, DE MOEL H, et al. The world's road to water scarcity:Shortage and stress in the 20th century and pathways towards sustainability[J]. Scientific Reports, 2016, 6(1):38495. DOI:10.1038/srep38495. [4] PORADA S, ZHAO R, VAN DER WAL A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8):1388-1442. DOI:10.1016/j.pmatsci.2013.03.005. [5] BROGIOLI D. Extracting renewable energy from a salinity difference using a capacitor[J]. Physical Review Letters, 2009, 103(5):058501. DOI:10.1103/PhysRevLett.103.058501. [6] BAZANT M Z, THORNTON K, AJDARI A. Diffuse-charge dynamics in electrochemical systems[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(2):21506. DOI:10.1103/PhysRevE.70.021506. [7] 尹广军, 陈福明. 电容去离子研究进展 [J]. 水处理技术, 2003(2):63-66. DOI:10.3969/j.issn.1000-3770.2003.02.001 [8] BIKERMAN J J. Structure and capacity of electrical double layer[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2009, 33(220):384-397. [9] BIESHEUVEL P M. Thermodynamic cycle analysis for capacitive deionization[J]. Journal of Colloid and Interface Science, 2009, 332(1):258-264. DOI:10.1016/j.jcis.2008.12.018. [10] BIESHEUVEL P M, VAN LIMPT B, VAN DER WAL A. Dynamic adsorption/desorption process model for capacitive deionization[J]. The Journal of Physical Chemistry C, 2009, 113(14):5636-5640. DOI:10.1021/jp809644s. [11] WANG G, QIAN B, DONG Q, et al. Highly mesoporous activated carbon electrode for capacitive deionization[J]. Separation and Purification Technology, 2013, 103(103):216-221. [12] PORADA S, BORCHARDT L, OSCHATZ M, et al. Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization[J]. Energy & Environmental Science, 2013, 6(12):3700. [13] NADAKATTI S, TENDULKAR M, KADAM M. Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology[J]. Desalination, 2011, 268(1/2/3):182-188. [14] ZOU L, MORRIS G, QI D. Using activated carbon electrode in electrosorptive deionisation of brackish water[J]. Desalination, 2008, 225(1/2/3):329-340. [15] YANG C M, CHOI W H, NA B K, et al. Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes[J]. Desalination, 2005, 174(2):125-133. DOI:10.1016/j.desal.2004.09.006. [16] LI L, ZOU L, SONG H, et al. Ordered mesoporous carbons synthesized by a modified sol-gel process for electrosorptive removal of sodium chloride[J]. Carbon, 2009, 47(3):775-781. DOI:10.1016/j.carbon.2008.11.012. [17] FARMER J C, FIX D V, MACK G V. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes[J]. Journal of The Electrochemical Society, 1996, 143(1):159-169. DOI:10.1149/1.1836402. [18] KIM D, GUIVER M, NAM S, et al. Preparation of ion exchange membranes for fuel cell based on crosslinked poly(vinyl alcohol) with poly(styrene sulfonic acid-co-maleic acid)[J]. Journal of Membrane Science, 2006, 281(1/2):156-162. [19] KIM Y J, CHOI J H. Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane[J]. Separation and Purification Technology, 2010, 71(1):70-75. DOI:10.1016/j.seppur.2009.10.026. [20] KIM Y J, CHOI J H. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer[J]. Water Research, 2010, 44(3):990-996. DOI:10.1016/j.watres.2009.10.017. [21] LEE J B, PARK K K, EUM H M, et al. Desalination of a thermal power plant wastewater by membrane capacitive deionization[J]. Desalination, 2006, 196(1/2/3):125-134. [22] KIM T, DYKSTRA J E, PORADA S, et al. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage[J]. Journal of Colloid and Interface Science, 2015, 446:317-326. DOI:10.1016/j.jcis.2014.08.041. [23] ZHAO R, SATPRADIT O, RIJNAARTS H H, et al. Optimization of salt adsorption rate in membrane capacitive deionization[J]. Water Research, 2013, 47(5):1941-1952. DOI:10.1016/j.watres.2013.01.025. [24] RHIM J, PARK H, LEE C, et al. Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group:Proton and methanol transport through membranes[J]. Journal of Membrane Science, 2004, 238(1/2):143-151. [25] LEBRUN L, DA SILVA E, METAYER M. Elaboration of ion-exchange membranes with semi-interpenetrating polymer networks containing poly(vinyl alcohol) as polymer matrix[J]. Journal of Applied Polymer Science, 2002, 84(8):1572-1580. DOI:10.1002/app.10420. [26] KIM J H, KIM J Y, LEE Y M, et al. Properties and swelling characteristics of cross-linked poly(vinyl alcohol)/chitosan blend membrane[J]. Journal of Applied Polymer Science, 1992, 45(10):1711-1717. DOI:10.1002/app.1992.070451004. [27] KRUMOVA M, L PEZ D, BENAVENTE R, et al. Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol)[J]. Polymer, 2000, 41(26):9265-9272. DOI:10.1016/S0032-3861(00)00287-1. [28] 闫卫东, 姚加, 谢学鹏, 等. 用电动势法测定NaBr在甲醇-水体系中298.15 K下的离子迁移数 [J]. 化学物理学报, 1996(6):552-558 [29] NAGARALE R K, SHAHI V K, THAMPY S K, et al. Studies on electrochemical characterization of polycarbonate and polysulfone based heterogeneous cation-exchange membranes[J]. Reactive & Functional Polymers, 2004, 61(1):131-138.
|