[1] HE F, LEGENDRE P, LAFRANKIE J V. Distribution patterns of tree species in a Malaysian tropical rain forest[J]. Journal of Vegetation Science, 1997(8):105-114. [2] WIEGAND T, MOLONEY K. Rings, circles, and null-models for point pattern analysis in ecology[J]. Oikos, 2004, 104:209-229. DOI:10.1111/j.0030-1299.2004.12497.x. [3] WANG X, WIEGAND T, HAO Z, et al. Species associations in an old-growth temperate forest in north-eastern China[J]. Journal of Ecology, 2010, 98:674-686. DOI:10.1111/j.1365-2745.2010.01644.x. [4] WIEGAND T, URIARTE M, KRAFT N J B, et al. Spatially explicit metrics of species diversity, functional diversity, and phylogenetic diversity:Insights into plant community assembly processes[J]. Annual Review of Ecology, Evolution, and Systematics, 2017, 48:329-351. DOI:10.1146/annurev-ecolsys-110316-022936. [5] DIGGLE P J. Statistical Analysis of Point Patterns[M]. London:Arnold, 2003. [6] WIEGAND T, GUNATILLEKE S, GUNATILLEKE N. Species associations in a heterogeneous Sri Lankan Dipterocarp Forest[J]. The American Naturalist, 2007, 170:E77-E95. DOI:10.1086/521240. [7] HUBBELL S P. The Unified Neutral Theory of Biodiversity and Biogeography[M]. New Jersy:Princeton University Press, 2001. [8] GETZIN S, WIEGAND T, WIEGAND K, et al. Heterogeneity influences spatial patterns and demographics in forest stands[J]. Journal of Ecology, 2008, 96:807-820. DOI:10.1111/j.1365-2745.2008.01377.x. [9] GLEASON H A. The individualistic concept of the plant association[J]. Bulletin of the Torrey Botanical Club, 1926, 53:7-26. DOI:10.2307/2479933. [10] GREIG-SMITH P. Quantitative Plant Ecology[M]. California:University of California Press, 1983. [11] PHILLIPS O L, VARGAS P N, MONTEAGUDO A L, et al. Habitat association among Amazonian tree species:A landscape-scale approach[J]. Journal of Ecology, 2003, 91:757-775. DOI:10.1046/j.1365-2745.2003.00815.x. [12] GUNATILLEKE C, GUNATILLEKE I, ESUFALI S, et al. Species-habitat associations in a Sri Lankan Dipterocarp Forest[J]. Journal of Tropical Ecology, 2006, 22:371-384. DOI:10.1017/S0266467406003282. [13] VINCENT G, MOLINO J F, MARESCOT L, et al. The relative importance of dispersal limitation and habitat preference in shaping spatial distribution of saplings in a tropical moist forest:A case study along a combination of hydromorphic and canopy disturbance gradients[J]. Annals of Forest Science, 2011, 68:357-370. DOI:10.1007/s13595-011-0024-z. [14] 谢玉彬, 马遵平, 杨庆松, 等. 基于地形因子的天童地区常绿树种和落叶树种共存机制研究[J]. 生物多样性, 2012, 20:159-167 [15] HARMS K, CONDIT R, HUBBELL S, et al. Habitat associations of trees and shrubs in a 50 ha neotropical forest plot[J]. Journal of Ecology, 2001, 89:947-959. DOI:10.1111/j.1365-2745.2001.00615.x. [16] VALENCIA R, FOSTER R B, VILLA G, et al. Tree species distributions and local habitat variation in the Amazon:Large forest plot in eastern Ecuador[J]. Journal of Ecology, 2004, 92:214-229. DOI:10.1111/j.0022-0477.2004.00876.x. [17] PLOTKIN J B, CHAVE J, ASHTON P S. Cluster analysis of spatial patterns in Malaysian tree species[J]. The American Naturalist, 2002, 160:629-644. DOI:10.1086/342823. [18] SEIDLER T G, PLOTKIN J B. Seed dispersal and spatial pattern in tropical trees[J]. PLoS Biology, 2006(4):e344. [19] JANZEN D H. Herbivores and the number of tree species in tropical forests[J]. The American Naturalist, 1970, 104:501-528. [20] TILMAN D. Niche tradeoffs, neutrality, and community structure:A stochastic theory of resource competition, invasion, and community assembly[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101:10854-10861. DOI:10.1073/pnas.0403458101. [21] CALLAWAY R M, WALKER L R. Competition and facilitation:A synthetic approach to interactions in plant communities[J]. Ecology, 1997, 78:1958-1965. DOI:10.1890/0012-9658(1997)078[1958:CAFASA]2.0.CO;2. [22] YANG Q S, SHEN G C, LIU H M, et al. Detangling the effects of environmental filtering and dispersal limitation on aggregated distributions of tree and shrub species:Life stage matters[J]. PLoS ONE, 2016(11):e0156326. [23] HARMS T M, DINSMORE S J. Spatial scale matters when modeling avian co-occurrence[J]. Ecosphere, 2016(7):e01288. [24] JOHN R, DALLING J W, HARMS K E, et al. Soil nutrients influence spatial distributions of tropical tree species[J]. Proceedings of the National Academy of Sciences, 2007, 104:864-869. DOI:10.1073/pnas.0604666104. [25] 杨庆松, 马遵平, 谢玉彬, 等. 浙江天童 20ha 常绿阔叶林动态监测样地的群落特征[J]. 生物多样性, 2011, 19:215-223 [26] 宋永昌, 王祥荣. 浙江天童国家森林公园的植被和区系[M]. 上海:上海科学技术文献出版社, 1995. [27] CONDIT R. Tropical Forest Census Plots:Methods and Results from Barro Colorado Island, Panama and A Comparison with Other Plots[M]. USA:Springer. 1998. [28] SHEN G C, YU M J, HU X S, et al. Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity[J]. Ecology, 2009, 90:3033-3041. DOI:10.1890/08-1646.1. [29] BADDELEY A, TURNER R. Spatstat:An R package for analyzing spatial point patterns[J]. Journal of Statistical Software, 2005(12):1-42. [30] ITOH A, OHKUBO T, NANAMI S, et al. Comparison of statistical tests for habitat associations in tropical forests:A case study of sympatric dipterocarp trees in a Bornean forest[J]. Forest Ecology and Management, 2010, 259:323-332. DOI:10.1016/j.foreco.2009.10.022. [31] URIARTE M, CONDIT R, CANHAM C D, et al. A spatially explicit model of sapling growth in a tropical forest:Does the identity of neighbours matter[J]. Journal of Ecology, 2004, 92:348-360. DOI:10.1111/j.0022-0477.2004.00867.x. [32] BAR-MASSADA A, YANG Q S, SHEN G C, et al. Tree species co-occurrence patterns change across grains:Insights from a subtropical forest[J]. Ecosphere, 2018, 9(5):e02213. DOI:10.1002/ecs2.2213. [33] LEGENDRE P. Species associations:The kendall coefficient of concordance revisited[J]. Journal of Agricultural, Biological, and Environmental Statistics, 2005(10):226-245. [34] PETERS H A. Neighbour-regulated mortality:The influence of positive and negative density dependence on tree populations in species-rich tropical forests[J]. Ecology Letters, 2003(6):757-765. [35] MAESTRE F T, CALLAWAY R M, VALLADARES F, et al. Refining the stress-gradient hypothesis for competition and facilitation in plant communities[J]. Journal of Ecology, 2009, 97:199-205. DOI:10.1111/j.1365-2745.2008.01476.x. [36] 张炜平, 潘莎, 贾昕, 等. 植物间正相互作用对种群动态和群落结构的影响:基于个体模型的研究进展[J]. 植物生态学报, 2013, 37:571-582 [37] CONDIT R, ASHTON P S, BAKER P, et al. Spatial patterns in the distribution of tropical tree species[J]. Science, 2000, 288:1414-1418. DOI:10.1126/science.288.5470.1414. [38] KRAFT N J, VALENCIA R, ACKERLY D D. Functional traits and niche-based tree community assembly in an Amazonian forest[J]. Science, 2008, 322:580-582. DOI:10.1126/science.1160662. [39] ADLER P B, FAJARDO A, KLEINHESSELINK A R, et al. Trait-based tests of coexistence mechanisms[J]. Ecology Letters, 2013, 16:1294-1306. DOI:10.1111/ele.12157. [40] FANG X F, SHEN G C, YANG Q S, et al. Habitat heterogeneity explains mosaics of evergreen and deciduous trees at local-scales in a subtropical evergreen broad-leaved forest[J]. Journal of Vegetation Science, 2017, 28:379-388. DOI:10.1111/jvs.12496.
|