化学化工

基于微液滴的 ZnO 纳米结构制备及荧光检测性能研究

  • 黄斌冰 ,
  • 谢琰 ,
  • 谢文辉 ,
  • 赵振杰 ,
  • 李欣
展开
  • 华东师范大学 物理与电子科学学院 纳光电与先进装备教育部工程研究中心, 上海 200062

收稿日期: 2019-04-03

  网络出版日期: 2020-03-16

基金资助

国家自然科学基金(11574084,11774091,11704122,51302085,51572086)

Preparation and fluorescence detection properties of ZnO nanostructure based on microdroplets

  • HUANG Binbing ,
  • XIE Yan ,
  • XIE Wenhui ,
  • ZHAO Zhenjie ,
  • LI Xin
Expand
  • Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China

Received date: 2019-04-03

  Online published: 2020-03-16

摘要

基于液滴微反应器, 通过水热法合成 ZnO 纳米结构. 该芯片集成了多种功能单元, 包括用于液滴生成的T形通道, 液滴汇合的 Y 形通道, 以及快速混合和观察纳米结构形成的 S 形通道. 通过调节水相和油相的流量改变液滴的尺寸, 研究微液滴中制备的纳米结构的形貌和尺寸, 并利用硫氰酸荧光素标记的羊抗牛 IgG 研究其荧光检测性能. 该工作表明, 通过流体动力学耦合形成的微液滴可制备 ZnO 纳米结构, 其颗粒形貌和尺寸随着液滴尺寸的变化而改变. 加热温度为 75 ℃, 油相、氨水、锌盐溶液流量分别为600、30、90 μL/h时制备的ZnO纳米结构具有最优的荧光检测性能.

本文引用格式

黄斌冰 , 谢琰 , 谢文辉 , 赵振杰 , 李欣 . 基于微液滴的 ZnO 纳米结构制备及荧光检测性能研究[J]. 华东师范大学学报(自然科学版), 2020 , 2020(2) : 131 -139 . DOI: 10.3969/j.issn.1000-5641.201933001

Abstract

In this paper, we discuss ZnO nanostructures synthesized by a hydrothermal method in a droplet microreactor. The microfluidic chip used integrates a multi-function unit that includes a T-channel for droplet formation, a Y-channel for droplet fusion, and an S-channel for rapid mixing and observation of the nanoparticle formation process. By adjusting the flow rates of the aqueous phase and the oil phase, we studied the morphology and size of droplets; fluorescence detection of the ZnO nanostructure synthesized, moreover, was evaluated by an FITC-labeled goat anti-bovine IgG. This work shows that ZnO nanostructures can be prepared by fluid dynamic coupling of droplets and that the morphology and size of the nanostructures vary with droplet size. When the flow rates of the oil phase, ammonia water, and ferric solution were 600, 30, and 90 μL/h, respectively, the ZnO nanostructure synthesized at 75 ℃ showed optimal fluorescence detection performance.

参考文献

[1] TONG H, OUYANG S X, BI Y P, et al. Nano-photocatalytic materials:Possibilities and challenges[J]. Advanced Materials, 2012, 24(2):229-251. DOI:10.1002/adma.201102752.
[2] LIM S Y, SHEN W, GAO Z Q. Carbon quantum dots and their applications[J]. Chemical Society Reviews, 2015, 44(1):362-381. DOI:10.1039/C4CS00269E.
[3] LI Q L, MAHENDRA S, LYON D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control:Potential applications and implications[J]. Water Research, 2008, 42(18):4591-4602. DOI:10.1016/j.watres.2008.08.015.
[4] HUANG X, ZENG Z Y, ZHANG H. Metal dichalcogenide nanosheets:preparation, properties and applications[J]. Chemical Society Reviews, 2013, 42(5):1934-1946. DOI:10.1039/c2cs35387c.
[5] GUO L X, SHI Y C, LIU X F, et al. Enhanced fluorescence detection of proteins using ZnO nanowires integrated inside microfluidic chips[J]. Biosensors and Bioelectronics, 2018, 99:368-374. DOI:10.1016/j.bios.2017.08.003.
[6] SURESH G, RAMANUJAN R V, CHONG T W, et al. Poly(N-isopropyl acrylamide) coated magnetite nanoparticles as contrast agents for magnetic resonance imaging[J]. Nanoscience and Nanotechnology Letters, 2015, 7(1):15-19. DOI:10.1166/nnl.2015.1944.
[7] DEATSCH A E, EVANS B A. Heating efficiency in magnetic nanoparticle hyperthermia[J]. Journal of Magnetism and Magnetic Materials, 2014, 354:163-172. DOI:10.1016/j.jmmm.2013.11.006.
[8] WANG Z L. From nanogenerators to piezotronics-A decade-long study of ZnO nanostructures[J]. MRS Bulletin, 2012, 37(9):814-827. DOI:10.1557/mrs.2012.186.
[9] ARYA S K, SAHA S, RAMIREZ-VICK J E, et al. Recent advances in ZnO nanostructures and thin films for biosensor applications:Review[J]. Analytica Chimica Acta, 2012, 737:1-21. DOI:10.1016/j.aca.2012.05.048.
[10] DORNIANI D, BIN HUSSEIN M Z, KURA A U, et al. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system[J]. Drug Design Development and Therapy, 2013(7):1015-1026.
[11] WANG H Y, XU L, WU Y Q, et al. Plasmon resonance-induced photoluminescence enhancement of CdTe/Cds quantum dots thin films[J]. Applied Surface Science, 2016, 387:1281-1284. DOI:10.1016/j.apsusc.2016.06.092.
[12] GIL S, SILVA J M, MANO J F. Magnetically multilayer polysaccharide membranes for biomedical applications[J]. Acs Biomaterials Science & Engineering, 2015, 1(10):1016-1025.
[13] ZHOU X T, LIN T H, LIU Y H, et al. Structural, optical, and improved field-emission properties of tetrapod-shaped Sn-doped ZnO nanostructures synthesized via thermal evaporation[J]. Acs Applied Materials & Interfaces, 2013, 5(20):10067-10073.
[14] GUO L X, SHI Y C, ZHAO Z J, et al. Fabrication and fluorescence biodetection of ZnO nanorods using microfluidic technology[J]. Journal of Inorganic Materials, 2018, 33(10):1103-1109. DOI:10.15541/jim20180005.
[15] ALIVISATOS A P. Birth of a nanoscience building block[J]. Acs Nano, 2008, 2(8):1514-1516. DOI:10.1021/nn800485f.
[16] BURDA C, CHEN X B, NARAYANAN R, et al. Chemistry and properties of nanocrystals of different shapes[J]. Chemical Reviews, 2005, 105(4):1025-1102. DOI:10.1021/cr030063a.
[17] GAO M R, XU Y F, JIANG J, et al. Nanostructured metal chalcogenides:Synthesis, modification, and applications in energy conversion and storage devices[J]. Chemical Society Reviews, 2013, 42(7):2986-3017. DOI:10.1039/c2cs35310e.
[18] MARRE S, JENSEN K F. Synthesis of micro and nanostructures in microfluidic systems[J]. Chemical Society Reviews, 2010, 39(3):1183-1202. DOI:10.1039/b821324k.
[19] WANG J M, SONG Y J. Microfluidic synthesis of nanohybrids[J]. Small, 2017, 13(18):19.
[20] DUFFY D C, MCDONALD J C, SCHUELLER O J A, et al. Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)[J]. Analytical Chemistry, 1998, 70(23):4974-4984. DOI:10.1021/ac980656z.
[21] CARRUTHERS C W, GERDTS JR C, JOHNSON M D, et al. A microfluidic, high throughput protein crystal growth method for microgravity[J]. PloS One, 2013, 8(11):e82298.
[22] FEUERBORN A, PRASTOWO A, COOK P R, et al. Merging drops in a teflon tube, and transferring fluid between them, illustrated by protein crystallization and drug screening[J]. Lab on a Chip, 2015, 15(18):3766-3775. DOI:10.1039/C5LC00726G.
[23] NIU G, RUDITSKIY A, VARA M, et al. Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors[J]. Chemical Society Reviews, 2015, 44(16):5806-5820. DOI:10.1039/C5CS00049A.
[24] SAUTER C, DHOUIB K, LORBER B. From macrofluidics to microfluidics for the crystallization of biological macromolecules[J]. Crystal Growth & Design, 2007, 7(11):2247-2250.
[25] PHILLIPS T W, LIGNOS I G, MACEICZYK R M, et al. Nanocrystal synthesis in microfluidic reactors:Where next?[J]. Lab on a Chip, 2014, 14(17):3172-3180. DOI:10.1039/C4LC00429A.
[26] PAN L J, TU J W, MA H T, et al. Controllable synthesis of nanocrystals in droplet reactors[J]. Lab on a Chip, 2018, 18(1):41-56. DOI:10.1039/C7LC00800G.
[27] REDDY L H, ARIAS J L, NICOLAS J, et al. Magnetic nanoparticles:Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications[J]. Chemical Reviews, 2012, 112(11):5818-5878. DOI:10.1021/cr300068p.
[28] BARET J C. Surfactants in droplet-based microfluidics[J]. Lab on a Chip, 2012, 12(3):422-433. DOI:10.1039/C1LC20582J.
[29] COSSAIRT B M. Shining light on indium phosphide quantum dots:Understanding the interplay among precursor conversion, nucleation, and growth[J]. Chemistry of Materials, 2016, 28(20):7181-7189. DOI:10.1021/acs.chemmater.6b03408.
[30] DEMIANETS L N, KOSTOMAROV D V, KUZ'MINA I P, et al. Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions[J]. Crystallography Reports, 2002, 47:S86-S98. DOI:10.1134/1.1529962.
[31] JANG J M, KIM S D, CHOI H M, et al. Morphology change of self-assembled ZnO 3D nanostructures with different pH in the simple hydrothermal process[J]. Materials Chemistry and Physics, 2009, 113(1):389-394. DOI:10.1016/j.matchemphys.2008.07.108.
[32] LIZAMA-TZEC F I, GARCIA-RODRIGUEZ R, RODRIGUEZ-GATTORNO G, et al. Influence of morphology on the performance of ZnO-based dye-sensitized solar cells[J]. Rsc Advances, 2016, 6(44):37424-37433. DOI:10.1039/C5RA25618F.
[33] MOHAMMED M I, DESMULLIEZ M P Y. Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers:A review[J]. Lab on a Chip, 2011, 11(4):569-595. DOI:10.1039/C0LC00204F.
文章导航

/