物理学与电子学

电场调制WS2单层分子薄膜光致发光行为

  • 费萌 ,
  • 谢微
展开
  • 华东师范大学 物理与电子科学学院, 上海 200241

收稿日期: 2020-06-11

  网络出版日期: 2021-01-28

基金资助

国家自然科学基金(11674097)

Electric field modulated photoluminescence from WS2 monolayers

  • Meng FEI ,
  • Wei XIE
Expand
  • School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2020-06-11

  Online published: 2021-01-28

摘要

二维材料已经在多个领域得到应用, 其中过渡金属硫化物(Transition metal dichalcogenides, TMDCs)因存在带隙而有望用于光电领域. 将机械剥离法制备的WS2单层分子薄膜通过干法转移至两种微周期电极结构上, 实验发现其光致发光信号受到外加偏压的调制. 研究了常温和低温环境下外加偏压对WS2薄膜荧光光谱信号的影响, 分析讨论了不同荧光峰强度和峰位的变化行为和物理机理. 基于外加偏压,实现对WS2单层分子薄膜光学性能的调制, 有望在场效应晶体管、光电探测器、柔性电子器件以及异质结器件等诸多光电领域实现应用.

本文引用格式

费萌 , 谢微 . 电场调制WS2单层分子薄膜光致发光行为[J]. 华东师范大学学报(自然科学版), 2021 , 2021(1) : 137 -143 . DOI: 10.3969/j.issn.1000-5641.202022010

Abstract

Two-dimensional materials have been used in applications across a variety of fields; transition metal dichalcogenides(TMDCs), in particular, are a candidate for use in the field of optoelectronics due to the presence of a band gap. In this paper, WS2 monolayers prepared by micro-mechanical exfoliation are transferred to two micro-period electrode structures. We found that the photoluminescence of the material is modulated by external bias. We studied the effects of bias on the photoluminescence of the WS2 monolayer at room temperature and low temperature. The corresponding characteristics and physical mechanisms of the photoluminescence(PL) spectra, moreover, are analyzed and discussed. With the application of bias to modulate the optical properties of the WS2 monolayer, it is expected that the technology can be applied to many photoelectric products, including field effect transistors, photodetectors, flexible electronic devices, and heterojunction devices.

参考文献

1 DAS S, KIM M, LEE J, et al. Critical Reviews in Soild State and Materials Sciences, Synthesis, properties, and applications of 2-D materials: A comprehensive review. 2014, 39 (4): 231- 252.
2 GRIGORENKO A N, POLINI M, NOVOSELOV K S. Nature Photonics, Graphene plasmonics. 2012, 6 (11): 749- 758.
3 CASTRO E V, NOVOSELOV K S, MOROZOV S V, et al. Physical Review Letters, Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. 2007, 99 (21): 6802- 6806.
4 MAK K F, LEE C, HONE J, et al. Physical Review Letters, Atomically thin MoS2: A new direct-gap semiconductor . 2010, 105 (13): 6805- 6809.
5 ZHANG Q, LU J, WANG Z, et al. Advanced Opyical Materials, Reliable synthesis of large-area monolayer WS2 single crystals, films, and heterostructures with extraordinary photoluminescence induced by water intercalation . 2018, 6 (12): 1701347- 1701356.
6 CONG C, SHANG J, WU X, et al. Advanced Opyical Materials, Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition . 2014, 2 (2): 131- 136.
7 KORMANYOS A, ZOLYOMI V, DRUMMOND N D, et al. Physical Review X, Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. 2014, 4 (1): 011034- 011050.
8 ROY S, BERMEL P. Solar Energy Materials and Solar Cells, Electronic and optical properties of ultra-thin 2D tungsten disulfide for photovoltaic applications. 2018, 174 (C): 370- 379.
9 WANG L, WANG W, WANG Q, et al. RSC Advances, Study on photoelectric characteristics of monolayer WS2 films . 2019, 9 (64): 37195- 37200.
10 HUANG X, ZENG Z, ZHANG H. Chemical Society Reviews, Metal dichalcogenide nanosheets: preparation, properties and applications. 2013, 42 (5): 1934- 1946.
11 ZHAO C, NORDEN T, ZHANG P, et al. Nature Nanotechnology, Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field . 2017, 12 (8): 757.
12 LIU Y, HUANG W, CHEN W, et al. Applied Surface Science, Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability . 2019, 481, 1127- 1132.
13 LIN T W, SADHASIVAM T, WANG A Y, et al. ChemElectroChem, Ternary composite nanosheets with MoS2/WS2/graphene heterostructures as high-performance cathode materials for supercapacitors . 2018, 5 (7): 1024- 1031.
14 TANG B, YU Z G, HUANG L, et al. ACS Nano, Direct n- to p-Type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment . 2018, 12 (3): 2506- 2513.
15 YUE Y, CHEN J, ZHANG Y, et al. ACS Applied Materials & Interfaces, Two-dimensional high-quality monolayered triangular WS2 flakes for field-effect transistors . 2018, 10 (26): 22435- 22444.
16 ZHAO H, GUO Q, XIA F, et al. Nanophotonics, Two-dimensional materials for nanophotonics application. 2015, 4 (2SI): 128- 142.
17 COLEMAN J N, LOTYA M, O’NEILL A, et al. Science, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. 2011, 331 (6017): 568- 571.
18 LIU J, LO T W, SUN J, et al. Journal of Materials Chemistry C, A comprehensive comparison study of CVD-grown and mechanically exfoliated fewlayered WS2: The vibrational and optical properties . 2017, 5 (43): 1123911245.
19 HE Z Y, SHENG Y W, RONG Y M, et al. ACS Nano, Layer-dependent modulation of tungsten disulfide photoluminescence by lateral electric fields. 2015, 9 (3): 2740- 2748.
20 LI X, WANG Y, FRY J N, et al. Journal of Physics and Chemistry of Solids, Tunneling field-effect junctions with WS2 barrier . 2019, 128, 343- 350.
21 SHANG J Z, SHEN X N, CONG C X, et al. ACS Nano, Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. 2015, 9 (1): 647- 655.
22 PLECHINGER G, NAGLER P, KRAUS J, et al. Physica Status Solidi (RRL) - Rapid Research Letters, Identification of excitons, trions and biexcitons in single-layer WS2. 2015, 9 (8): 457- 461.
23 MAK K F, HE K L, LEE C G, et al. Nature Materials, Tightly bound trions in monolayer MoS2. 2013, 12 (3): 207- 211.
文章导航

/