1 |
DAS S, KIM M, LEE J, et al. Critical Reviews in Soild State and Materials Sciences, Synthesis, properties, and applications of 2-D materials: A comprehensive review. 2014, 39 (4): 231- 252.
doi: 10.1080/10408436.2013.836075
|
2 |
GRIGORENKO A N, POLINI M, NOVOSELOV K S. Nature Photonics, Graphene plasmonics. 2012, 6 (11): 749- 758.
doi: 10.1038/nphoton.2012.262
|
3 |
CASTRO E V, NOVOSELOV K S, MOROZOV S V, et al. Physical Review Letters, Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. 2007, 99 (21): 6802- 6806.
doi: 10.1103/PhysRevLett.99.216802
|
4 |
MAK K F, LEE C, HONE J, et al. Physical Review Letters, Atomically thin MoS2: A new direct-gap semiconductor . 2010, 105 (13): 6805- 6809.
doi: 10.1103/PhysRevLett.105.136805
|
5 |
ZHANG Q, LU J, WANG Z, et al. Advanced Opyical Materials, Reliable synthesis of large-area monolayer WS2 single crystals, films, and heterostructures with extraordinary photoluminescence induced by water intercalation . 2018, 6 (12): 1701347- 1701356.
doi: 10.1002/adom.201701347
|
6 |
CONG C, SHANG J, WU X, et al. Advanced Opyical Materials, Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition . 2014, 2 (2): 131- 136.
doi: 10.1002/adom.201300428
|
7 |
KORMANYOS A, ZOLYOMI V, DRUMMOND N D, et al. Physical Review X, Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. 2014, 4 (1): 011034- 011050.
doi: 10.1103/PhysRevX.4.011034
|
8 |
ROY S, BERMEL P. Solar Energy Materials and Solar Cells, Electronic and optical properties of ultra-thin 2D tungsten disulfide for photovoltaic applications. 2018, 174 (C): 370- 379.
doi: 10.1016/j.solmat.2017.09.011
|
9 |
WANG L, WANG W, WANG Q, et al. RSC Advances, Study on photoelectric characteristics of monolayer WS2 films . 2019, 9 (64): 37195- 37200.
doi: 10.1039/c9ra07924f
|
10 |
HUANG X, ZENG Z, ZHANG H. Chemical Society Reviews, Metal dichalcogenide nanosheets: preparation, properties and applications. 2013, 42 (5): 1934- 1946.
doi: 10.1039/c2cs35387c
|
11 |
ZHAO C, NORDEN T, ZHANG P, et al. Nature Nanotechnology, Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field . 2017, 12 (8): 757.
doi: 10.1038/nnano.2017.68
|
12 |
LIU Y, HUANG W, CHEN W, et al. Applied Surface Science, Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability . 2019, 481, 1127- 1132.
doi: 10.1016/j.apsusc.2019.03.179
|
13 |
LIN T W, SADHASIVAM T, WANG A Y, et al. ChemElectroChem, Ternary composite nanosheets with MoS2/WS2/graphene heterostructures as high-performance cathode materials for supercapacitors . 2018, 5 (7): 1024- 1031.
doi: 10.1002/celc.201800043
|
14 |
TANG B, YU Z G, HUANG L, et al. ACS Nano, Direct n- to p-Type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment . 2018, 12 (3): 2506- 2513.
doi: 10.1021/acsnano.7b08261
|
15 |
YUE Y, CHEN J, ZHANG Y, et al. ACS Applied Materials & Interfaces, Two-dimensional high-quality monolayered triangular WS2 flakes for field-effect transistors . 2018, 10 (26): 22435- 22444.
doi: 10.1021/acsami.8b05885
|
16 |
ZHAO H, GUO Q, XIA F, et al. Nanophotonics, Two-dimensional materials for nanophotonics application. 2015, 4 (2SI): 128- 142.
doi: 10.1515/nanoph-2014-0022
|
17 |
COLEMAN J N, LOTYA M, O’NEILL A, et al. Science, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. 2011, 331 (6017): 568- 571.
doi: 10.1126/science.1194975
|
18 |
LIU J, LO T W, SUN J, et al. Journal of Materials Chemistry C, A comprehensive comparison study of CVD-grown and mechanically exfoliated fewlayered WS2: The vibrational and optical properties . 2017, 5 (43): 1123911245.
doi: 10.1039/c7tc02831h
|
19 |
HE Z Y, SHENG Y W, RONG Y M, et al. ACS Nano, Layer-dependent modulation of tungsten disulfide photoluminescence by lateral electric fields. 2015, 9 (3): 2740- 2748.
doi: 10.1021/nn506594a
|
20 |
LI X, WANG Y, FRY J N, et al. Journal of Physics and Chemistry of Solids, Tunneling field-effect junctions with WS2 barrier . 2019, 128, 343- 350.
doi: 10.1016/j.jpcs.2017.12.005
|
21 |
SHANG J Z, SHEN X N, CONG C X, et al. ACS Nano, Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. 2015, 9 (1): 647- 655.
doi: 10.1021/nn5059908
|
22 |
PLECHINGER G, NAGLER P, KRAUS J, et al. Physica Status Solidi (RRL) - Rapid Research Letters, Identification of excitons, trions and biexcitons in single-layer WS2. 2015, 9 (8): 457- 461.
doi: 10.1002/pssr.201510224
|
23 |
MAK K F, HE K L, LEE C G, et al. Nature Materials, Tightly bound trions in monolayer MoS2. 2013, 12 (3): 207- 211.
doi: 10.1038/NMAT3505
|