1 |
WEBSTER L, YAN J A.. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Physical Review B, 2018, 98 (14): 144411.
|
2 |
LIU Z, DENG L J, PENG B.. Ferromagnetic and ferroelectric two-dimensional materials for memory application. Nano Research, 2020, 14 (6): 1802- 1813.
|
3 |
GIBERTINI M, KOPERSKI M, MORPURGO A F, et al.. Magnetic 2D materials and heterostructures. Nat Nanotechnol, 2019, 14 (5): 408- 419.
|
4 |
HUANG M, GAO L, ZHANG Y, et al.. Possible topological hall effect above room temperature in layered Cr1.2Te2 ferromagnet. Nano Letter, 2021, 21 (10): 4280- 4286.
|
5 |
ZHAO X X, SONG P, WANG C C, et al.. Engineering covalently bonded 2D layered materials by self-intercalation. Nature, 2020, 581 (7807): 171- 177.
|
6 |
FREITAS D C, WEHT R, SULPICE A, et al.. Ferromagnetism in layered metastable 1T-CrTe2. Journal of Physics: Condensed Matter, 2015, 27 (17): 176002.
|
7 |
SUN X D, LI W Y, WANG X, et al.. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Research, 2020, 13 (12): 3358- 3363.
|
8 |
FERREIRA P P, MANESCO A L R, DORINI T T, et al.. Strain engineering the topological type-II Dirac semimetal NiTe2. Physical Review B, 2021, 103 (12): 125134.
|
9 |
LIU H N, WANG X S, WU J X, et al.. Vapor deposition of magnetic van der Waals NiI2 crystals. ACS Nano, 2020, 14 (8): 10544- 10551.
|
10 |
KULISH V V, HUANG W.. Single-layer metal halides MX2 (X = Cl, Br, I): Stability and tunable magnetism from first principles and Monte Carlo simulations. Journal of Materials Chemistry C, 2017, 5 (34): 8734- 8741.
|
11 |
LIU Y, WANG W, LU H Y, et al.. The environmental stability characterization of exfoliated few-layer CrXTe3 (X = Si, Ge) nanosheets. Applied Surface Science, 2020, 511, 145452.
|
12 |
MOGULKOC A, MODARRESI M, RUDENKO A N.. Two-dimensional chromium pnictides CrX (X = P, As, Sb): Half-metallic ferromagnets with high Curie temperature. Physical Review B, 2020, 102 (2): 024441.
|
13 |
WANG B, ZHANG Y H, MA L, et al.. MnX (X = P, As) monolayers: A new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy. Nanoscale, 2019, 11 (10): 4204- 4209.
|
14 |
LIU N S, WANG C, JI W.. Recent research advances in two-dimensional magnetic materials. Acta Physica Sinica, 2022, 71 (12): 127504.
|
15 |
SHI M Z, KANG B L, MENG F B, et al.. Research progress of tuning correlated state in two-dimensional system by organic molecule intercalation. Acta Physica Sinica, 2022, 71 (12): 127403.
|
16 |
YUAN S G, PANG S Y, HAO J H.. 2D transition metal dichalcogenides, carbides, nitrides, and their applications in supercapacitors and electrocatalytic hydrogen evolution reaction. Applied Physics Reviews, 2020, 7 (2): 021304.
|
17 |
ZHAI B X, DU J, LI X P, et al.. Two-dimensional ferromagnetic materials and related van der Waals heterostructures: A first-principle study. Journal of Semiconductors, 2019, 40 (8): 081509.
|
18 |
GAO Y Q, GANGULI N, KELLY P J.. DFT study of itinerant ferromagnetism in p-doped monolayers of MoS2. Physical Review B, 2019, 100 (23): 235440.
|
19 |
LASEK K, LI J F, KOLEKAR S, et al.. Synthesis and characterization of 2D transition metal dichalcogenides: Recent progress from a vacuum surface science perspective. Surface Science Reports, 2021, 76 (2): 100523.
|
20 |
LI H, RUAN S C, ZENG Y J.. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Advanced Materials, 2019, 31 (27): 1900065.
|
21 |
LIANG Q J, ZHANG Q, ZHAO X X, et al.. Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities. ACS Nano, 2021, 15 (2): 2165- 2181.
|
22 |
HARDY W J, YUAN J T, GUO H, et al.. Thickness-dependent and magnetic-field-driven suppression of antiferromagnetic order in thin V5S8 single crystals. ACS Nano, 2016, 10 (6): 5941- 5946.
|
23 |
HUANG H, GAO M, WANG J H, et al.. Intercalator-assisted plasma-liquid technology: An efficient exfoliation method for few-layer two-dimensional materials. Science China Materials, 2020, 63 (10): 2079- 2085.
|
24 |
LI Q Q, LI S, WU D, et al.. Magnetic properties manipulation of CrTe2 bilayer through strain and self-intercalation. Applied Physics Letters, 2021, 119 (16): 162402.
|
25 |
GUO Z N, SUN F, YUAN W X.. Chemical intercalations in layered transition metal chalcogenides: Syntheses, structures, and related properties. Crystal Growth & Design, 2017, 17 (4): 2238- 2253.
|
26 |
LIM S, PAN S K, WANG K F, et al.. Tunable single-atomic charges on a cleaved intercalated transition metal dichalcogenide. Nano Letters, 2022, 22 (4): 1812- 1817.
|
27 |
MAY A F, OVCHINNIKOV D, ZHENG Q, et al.. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano, 2019, 13 (4): 4436- 4442.
|
28 |
GONG C, LI L, LI Z L, et al.. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546 (7657): 265- 269.
|
29 |
JIANG X, LIU Q X, XING J P, et al.. Recent progress on 2D magnets: Fundamental mechanism, structural design and modification. Applied Physics Reviews, 2021, 8 (3): 031305.
|
30 |
WU S M, WANG H, LI L. et al.. Intercalated MXene-based layered composites: Preparation and application. Chinese Chemical Letters, 2020, 31 (4): 961- 968.
|
31 |
XU W S, KE Y X, WANG Z, et al.. The metallic nature of two-dimensional transition-metal dichalcogenides and MXenes. Surface Science Reports, 2021, 76 (4): 100542.
|
32 |
LI X Q, WANG C Y, CAO Y, et al.. Functional MXene materials: Progress of their applications. Chemistry— An Asian Journal, 2018, 13 (19): 2742- 2757.
|
33 |
ZHOU J D, ZHANG W J, LIN Y C, et al.. Heterodimensional superlattice with in-plane anomalous Hall effect. Nature, 2022, 609 (7925): 46- 51.
|
34 |
PACK J D, MONKHORST H J.. “Special points for Brillouin-zone integrations”—A reply. Physical Review B, 1977, 16 (4): 1748- 1749.
|
35 |
ANDERSON P W.. New approach to the theory of superexchange interactions. Physical Review, 1959, 115 (1): 2- 13.
|
36 |
GOODENOUGH J B.. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Physical Review, 1955, 100 (2): 564- 573.
|