华东师范大学学报(自然科学版) ›› 2024, Vol. 2024 ›› Issue (3): 54-63.doi: 10.3969/j.issn.1000-5641.2024.03.006
收稿日期:
2023-09-19
出版日期:
2024-05-25
发布日期:
2024-05-25
通讯作者:
杨洋
E-mail:yyang@phy.ecnu.edu.cn
基金资助:
Jiaojiao LIU, Hongtao LIANG, Yang YANG*()
Received:
2023-09-19
Online:
2024-05-25
Published:
2024-05-25
Contact:
Yang YANG
E-mail:yyang@phy.ecnu.edu.cn
摘要:
在晶界和固体表面系统中, 针对界面“complexion” (或界面相、界面态) 转变及其调控相关的研究, 近年来呈现出持续增长的关注趋势. 与此同时, 这些界面相之间的转变问题, 在异质固液界面体系中尚未得到足够的关注. 使用分子动力学模拟方法预言了处于Pb熔点温度之上, Cu(111)/Pb(L)固液界面体系中存在的多界面相共存的界面状态; 观察到4种单原子层的界面状态, 即2种界面CuPb层状合金液相以及2种界面预凝固的Pb层状固相, 共存于固体Cu和液体Pb之间的双原子界面层内; 通过计算界面相在面内共存的各种性质空间分布, 模拟出了该体系多界面相共存的力学、热力学和动力学性质的不均匀性和面内各向异性; 计算获得的界面态热力学与动力学性质数值显著区别于固相Cu和液相Pb的相应性质. 另外, 测量得到的Cu(111)/Pb(L)固液界面态共存的“相平衡”条件具有共晶二元合金相图特征, 而不是CuPb合金的偏晶相图. 故所报道的数据有望为调节异质形核和润湿过程提供新的理论思路.
中图分类号:
刘娇娇, 梁洪涛, 杨洋. 异质固液界面中多界面态的原子模拟研究[J]. 华东师范大学学报(自然科学版), 2024, 2024(3): 54-63.
Jiaojiao LIU, Hongtao LIANG, Yang YANG. Research on atomistic simulation of the coexistence of multiple interfacial states at heterogeneous solid-liquid interface[J]. Journal of East China Normal University(Natural Science), 2024, 2024(3): 54-63.
表1
在620 K平衡态的Cu(111)/Pb(L)界面体系中,从面内共存的界面固相和界面液相中提取的热力学参数"
第一界面层 Pb(S)-alloy(L) | 第二界面层 Pb(S)-alloy(L) | 块体 Cu(111)/Pb(L) | |||||
40.90(1) | 33.36(2) | 83.063(1) | |||||
45.03(8) | 31.51(5) | 31.406(7) | |||||
2.7(2) | 2.4(3) | 0.8 | |||||
0.2(1) | 0.2(1) | 100 | |||||
22.0(6) | 1.8(1) | 0.64(1) | |||||
–3.951(2) | –4.156(2) | –3.4547(1) | |||||
–3.905(2) | –4.094(4) | –4.1033(2) | |||||
–1.076(1) | –1.914(1) | N/A | |||||
–0.933(6) | –1.788(8) | –1.8873(3) | |||||
–6.30(4) | 9.42(5) | 0.002(4) | |||||
–2.61(1) | –0.66(1) | 0.001(1) | |||||
1.00(1) | 3.55(2) | 0.003(6) | |||||
–2.16(2) | 0.56(2) | –0.004(4) | |||||
0.047(2) | 0.064(2) | 0.002(1) | |||||
0.509(5) | 0.947(7) | 1.540(2) |
1 | TANG M, CARTER W C, CANNON R M.. Diffuse interface model for structural transitions of grain boundaries. Physical Review B, 2006, 73 (2): 024102. |
2 | FROLOV T, OLMSTED D L, ASTA M, et al.. Structural phase transformations in metallic grain boundaries. Nature Communications, 2013, 4 (1): 1899. |
3 | BARAM M, CHATAIN D, KAPLAN W D.. Nanometer-thick equilibrium films: The interface between thermodynamics and atomistics. Science, 2011, 332 (6026): 206- 209. |
4 | BISHOP C M, TANG M, CANNON R M, et al.. Continuum modelling and representations of interfaces and their transitions in materials. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2006, 422 (1-2): 102- 114. |
5 | CANTWELL P R, TANG M, DILLON S J, et al.. Grain boundary complexions. Acta Materialia, 2014, 62, 1- 48. |
6 | KUNDU A, ASL K M, LUO J, et al.. Identification of a bilayer grain boundary complexion in Bi-doped Cu. Scripta Materialia, 2013, 68 (2): 146- 149. |
7 | FROLOV T, OLMSTED D L, ASTA M, et al.. Structural phase transformations in metallic grain boundaries. Nature Communications, 2013, 4, 1899. |
8 | PEREIRO-LÓPEZ E, LUDWIG W, BELLET D, et al.. Direct evidence of nanometric invasionlike grain boundary penetration in the Al/Ga system. Physical Review Letters, 2005, 95 (21): 215501. |
9 | LUO J.. Let thermodynamics do the interfacial engineering of batteries and solid electrolytes. Energy Storage Materials, 2019, 21, 50- 60. |
10 | DILLON S J, TANG M, CARTER W C, et al.. Complexion: A new concept for kinetic engineering in materials science. Acta Materialia, 2007, 55 (18): 6208- 6218. |
11 | FROLOV T.. Effect of interfacial structural phase transitions on the coupled motion of grain boundaries: A molecular dynamics study. Applied Physics Letters, 2014, 104 (21): 211905. |
12 | FROLOV T, MISHIN Y.. Phases, phase equilibria, and phase rules in low-dimensional systems. Journal of Chemical Physics, 2015, 143 (4): 044706. |
13 | FROLOV T, ASTA M, MISHION Y.. Phase transformations at interfaces: Observations from atomistic modeling. Current Opinion in Solid State & Materials Science, 2016, 20 (5): 308- 315. |
14 | LI X, LU K.. Improving sustainability with simpler alloys. Science, 2019, 364 (6442): 733- 734. |
15 | HECKMAN N M, FOILES S M, O'BRIEN C J.. New nanoscale toughening mechanisms mitigate embrittlement in binary nanocrystalline alloys. Nanoscale, 2018, 10 (45): 21231- 21243. |
16 | O'BRIEN C J, BARR C M, PRICE P M, et al.. Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals. Journal of Materials Science, 2018, 53 (4): 2911- 2927. |
17 | PETER N J, FROLOV T, DUARTE M J, et al.. Segregation-Induced nanofaceting transition at an asymmetric tilt grain boundary in copper. Physical Review Letters, 2018, 121 (25): 255502. |
18 | MEIBERS T, FROLOV T, RUDD R E, et al.. Observations of grain-boundary phase transformations in an elemental metal. Nature, 2020, 579 (7799): 375. |
19 | BARR C M, FOILES S M, ALKAYYALI M, et al.. The role of grain boundary character in solute segregation and thermal stability of nanocrystalline Pt-Au. Nanoscale, 2021, 13 (6): 3552- 3563. |
20 | TUCHINDA N, SCHUH C A.. Grain size dependencies of intergranular solute segregation in nanocrystalline materials. Acta Materialia, 2022, 226, 117614. |
21 | WYNBLATT P, CHATAIN D, RANGUIS A.. STM study of Bi-on-Cu(100). Surface Science, 2007, 601 (6): 1623- 1629. |
22 | PICKERING I, PALEICO M, SIRKIN Y A P, et al. Grand canonical investigation of the quasi liquid layer of ice: Is it liquid? [J]. The Journal of Physical Chemistry B, 2018, 122(18): 4880-4890. |
23 | TANG J, LAMBIE S, MEFTAHI N, et al.. Unique surface patterns emerging during solidification of liquid metal alloys. Nature Nanotechnology, 2021, 16 (4): 431- 439. |
24 | WANG M, PENG Y, WANG H, et al.. Coarsening of polycrystalline patterns in atomically thin surface crystals. Applied Physics Letters, 2021, 119 (12): 123102. |
25 | GABRISCH H, KJELDGAARD L, JOHNSON E, et al.. Equilibrium shape and interface roughening of small liquid Pb inclusions in solid Al. Acta Materialia, 2001, 49 (20): 4259- 4269. |
26 | OH S H, KAUFFMANN Y, SCHEU C, et al.. Ordered liquid aluminum at the interface with sapphire. Science, 2005, 310 (5748): 661- 663. |
27 | MOORTHY S K E, MENDELEV M I, HOWE J M.. The influence of spatial and temporal averaging on interpretation of HRTEM images of solid-liquid interfaces. Ultramicroscopy, 2013, 124, 40- 45. |
28 | SCHNEIDER M M, HOWE J M.. Observation of interface dynamics and Cu island formation at a crystalline Si/liquid Al-alloy interface. Acta Materialia, 2017, 133, 224- 229. |
29 | YANG G Q, LI J F, SHI Q W, et al.. Structural and dynamical properties of heterogeneous solid-liquid Ta-Cu interfaces: A molecular dynamics study. Computational Materials Science, 2014, 86, 64- 72. |
30 | KERN J L, BARRY P R, LAIRD B B.. Characterization of the Al-Ga solid-liquid interface using classical and ab initio molecular dynamics simulation. Physical Review Materials, 2020, 4 (4): 043604. |
31 | PALAFOX-HERNANDEZ J P, LAIRD B B.. Orientation dependence of heterogeneous nucleation at the Cu-Pb solid-liquid interface. Journal of Chemical Physics, 2016, 145 (21): 211914. |
32 | YANG Y, ASTA M, LAIRD B B.. Solid-Liquid interfacial premelting. Physical Review Letters, 2013, 110 (9): 096102. |
33 | LIANG H T, LAIRD B B, ASTA M, et al.. In-plane characterization of structural and thermodynamic properties for steps at faceted chemically heterogeneous solid/liquid interfaces. Acta Materialia, 2018, 143, 329- 337. |
34 | WYNBLATT P, SHI Z.. Relation between grain boundary segregation and grain boundary character in FCC alloys. Journal of Materials Science, 2005, 40 (11): 2765- 2773. |
35 | LUO J.. Grain boundary complexions: The interplay of premelting, prewetting, and multilayer adsorption. Applied Physics Letters, 2009, 95 (7): 071911. |
36 | RICKMAN J M, LUO J.. Layering transitions at grain boundaries. Current Opinion in Solid State & Materials Science, 2016, 20 (5): 225- 230. |
37 | WYNBLATT P, CHATAIN D.. Solid-state wetting transitions at grain boundaries. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008, 495 (1-2): 119- 125. |
38 | TANG M, CARTER W C, CANNON R M.. Grain boundary transitions in binary alloys. Physical Review Letters, 2006, 97 (7): 075502. |
39 | CLARKE D R, SHAW T M, PHILIPSE A P, et al.. Possible electrical double-layer contribution to the equilibrium thickness of intergranular glass films in polycrystalline ceramics. Journal of the American Ceramic Society, 1993, 76 (5): 1201- 1204. |
40 | MISHIN Y, BOETTINGER W J, WARREN J A, et al.. Thermodynamics of grain boundary premelting in alloys. I. Phase-field modeling. Acta Materialia, 2009, 57 (13): 3771- 3785. |
41 | LUO J.. Developing interfacial phase diagrams for applications in activated sintering and beyond: current status and future directions. Journal of the American Ceramic Society, 2012, 95 (8): 2358- 2371. |
42 | GAO B, GAO P Y, LU S H, et al.. Interface structure prediction via CALYPSO method. Science Bulletin, 2019, 64 (5): 301- 309. |
43 | HOYT J J, GARVIN J W, WEBB E B, et al.. An embedded atom method interatomic potential for the Cu-Pb system. Modelling and Simulation in Materials Science and Engineering, 2003, 11 (3): 287- 299. |
44 | WEBB E B, GREST G S, HEINE D R.. Precursor film controlled wetting of Pb on Cu. Physical Review Letters, 2003, 91 (23): 236102. |
45 | HEINE D R, GREST G S, WEBB E B.. Surface wetting of liquid nanodroplets: Droplet-size effects. Physical Review Letters, 2005, 95 (10): 107801. |
46 | PALAFOX-HERNANDEZ J P, LAIRD B B, ASTA M.. Atomistic characterization of the Cu-Pb solid-liquid interface. Acta Materialia, 2011, 59 (8): 3137- 3144. |
47 | PLIMPTON S.. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117 (1): 1- 19. |
48 | YANG Y, OLMSTED D L, ASTA M, et al.. Atomistic characterization of the chemically heterogeneous Al-Pb solid-liquid interface. Acta Materialia, 2012, 60 (12): 4960- 4971. |
49 | CANTWELL P R, FROLOV T, RUPERT T J, et al.. Grain boundary complexion transitions. Annual Review of Materials Research, 2020, 50, 465- 492. |
50 | DU H, LIANG H T, YANG Y.. Molecular dynamics simulation of monolayer confined ice-water phase equilibrium. Acta Chimica Sinica, 2018, 76 (6): 483- 490. |
51 | ZHANG X, LAIRD B B, LIANG H T, et al.. Atomistic characterization of the SiO2 high-density liquid/low-density liquid interface. Journal of Chemical Physics, 2022, 157 (13): 134703. |
52 | LU W L, LIANG H T, MA X M, et al.. Atomistic simulation study of the FCC and BCC crystal-melt interface stresses. Surfaces and Interfaces, 2022, 28, 101639. |
53 | EMUNA M, GREENBERG Y, HEVRONI R, et al.. Phase diagrams of binary alloys under pressure. Journal of Alloys and Compounds, 2016, 687, 360- 369. |
54 | HUDON P, JUNG I H, BAKER D R.. Effect of pressure on liquid-liquid miscibility gaps: A case study of the systems CaO-SiO2, MgO-SiO2, and CaMgSi2O6-SiO2. Journal of Geophysical Research-Solid Earth, 2004, 109 (B3): B03207. |
55 | MA X M, LIANG H T, LU W L, et al.. Atomistic characterization of the dispersed liquid droplet in immiscible Al-Pb alloy. Journal of Materials Research and Technology, 2021, 15, 2993- 3004. |
56 | YANG Y, LAIRD B B.. Droplet spreading on a surface exhibiting solid-liquid interfacial premelting. Acta Materialia, 2018, 143, 319- 328. |
[1] | 杜润润, 王珊, 柯学志. 高压下Th2N2S的结构相变: 第一性原理计算研究[J]. 华东师范大学学报(自然科学版), 2024, 2024(3): 36-44. |
[2] | 丁文杰, 谢文辉. 二维过渡金属硫族化物MX2-MX-MX2 (M = V, Cr, Mn, Fe; X = S, Se, Te)的计算研究[J]. 华东师范大学学报(自然科学版), 2024, 2024(3): 45-53. |
[3] | 赵威, 袁清红. C3N带隙调控的第一性原理研究[J]. 华东师范大学学报(自然科学版), 2022, 2022(4): 114-119. |
[4] | 张亚琼, 谢文辉. 二维过渡金属磷化物MnTn+1(M = V, Cr; T = P, As, Sb)的第一性原理计算研究[J]. 华东师范大学学报(自然科学版), 2022, 2022(2): 84-92. |
[5] | 席清华, 黄宜强, 陈加祥, 聂耳, 孙卓. Fe2O3/g-C3N4光催化降解罗丹明B性能研究[J]. 华东师范大学学报(自然科学版), 2021, 2021(3): 151-160. |
[6] | 李鹏飞, 王美婷, 梅晔. 平衡态与非平衡态分子溶剂化自由能的计算效率比较[J]. 华东师范大学学报(自然科学版), 2019, 2019(1): 83-92. |
[7] | 黄贤智, 朴贤卿, 蔡亚果. 光催化材料MIL-125(Ti)/BiOI的制备及光催化性能研究[J]. 华东师范大学学报(自然科学版), 2019, 2019(1): 93-104,114. |
[8] | 沈宇皓, 唐政, 彭伟. 可用作量子比特的一种负价态VSiON缺陷中心[J]. 华东师范大学学报(自然科学版), 2017, 2017(2): 97-106. |
[9] | 张剑锋, 单淑萍. 三角量子阱中束缚磁极化子的性质(英)[J]. 华东师范大学学报(自然科学版), 2015, 2015(6): 101-107. |
[10] | 高礼鹏, 刘 凯, 罗春花, 李建奇, 王依婷, 彭 晖. 一种新型T1-T2双模磁共振造影剂的制备及性能研究[J]. 华东师范大学学报(自然科学版), 2013, 2013(5): 102-109. |
[11] | 孙 放, 唐 政. 直接带隙半导体系统中的磁相互作用[J]. 华东师范大学学报(自然科学版), 2012, 2012(5): 31-36. |
[12] | 袁 立;杨燮龙;赵振杰. 电流退火对钴基非晶丝巨磁阻抗效应的影响[J]. 华东师范大学学报(自然科学版), 2008, 2008(3): 120-124. |
[13] | 王剑桥, 刘冬, 周君, 席清华, 聂耳, 孙卓. TiO2纳米管阵列双极光催化燃料电池的应用研究[J]. 华东师范大学学报(自然科学版), 2020, 2020(1): 93-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||