1 |
PASTOR-SATORRAS R, VESPIGNANI A. Physical Review Letters, Epidemic Spreading in Scale-Free Networks. 2001, 86 (14): 3200- 3203.
|
2 |
PASTOR-SATORRAS R, CASTELLANO C, VAN MIEGHEM P, et al. Reviews of Modern Physics, Epidemic processes in complex networks. 2015, 87 (3): 925.
|
3 |
WANG W, TANG M, STANLEY H E, et al. Reports on Progress in Physics, Unification of theoretical approaches for epidemic spreading on complex networks. 2017, 80 (3): 036603.
|
4 |
BARABÁSI, A L. Nature, The origin of bursts and heavy tails in human dynamics. 2005, 435 (7039): 207.
|
5 |
STOUFFER D B, MALMGREN R D, AMARAL L A N. Nature, Comment on Barabasi. 2005, 435, 207- 211.
|
6 |
VÁZQUEZ A, OLIVEIRA J G, DEZSÖ Z, et al. Physical Review E, Modeling bursts and heavy tails in human dynamics. 2006, 73 (3): 036127.
|
7 |
KENAH E, ROBINS J M. Physical Review E, Second look at the spread of epidemics on networks. 2007, 76 (3): 036113.
|
8 |
VAZQUEZ A, RACZ B, LUKACS A, et al. Physical Review Letters, Impact of non-Poissonian activity patterns on spreading processes. 2007, 98 (15): 158702.
|
9 |
KARRER B, NEWMAN M E J. Physical Review E, Message passing approach for general epidemic models. 2010, 82 (1): 016101.
|
10 |
MIN B, GOH K I, VAZQUEZ A. Physical Review E, Spreading dynamics following bursty human activity patterns. 2015, 83 (3): 036102.
|
11 |
STARNINI M, GLEESON J P, BOGUÑÁ M. Physical Review Letters, Equivalence between non-Markovian and Markovian dynamics in epidemic spreading processes. 2017, 118 (12): 128301.
|
12 |
CATOR E, BOVENKAMP R V D, VAN MIEGHEM P. Physical Review E, Susceptible-infected-susceptible epidemics on networks with general infection and cure times. 2013, 87 (6): 1- 7.
|
13 |
FENG M, CAI S M, TANG M, et al. Nature Communications, Equivalence and its invalidation between non-Markovian and Markovian spreading dynamics on complex networks. 2019, 10 (1): 1- 10.
|
14 |
MIN B, GOH K I, KIM I M. Europhysics Letters, Suppression of epidemic outbreaks with heavy-tailed contact dynamics. 2013, 103 (5): 50002.
|
15 |
VANMIEGHEM P, VANDEBOVENKAMP R. Physical Review Letters, Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks. 2013, 110 (10): 108701.
|
16 |
GEORGIOU N, KISS I Z, SCALAS E. Physical Review E, Solvable non-Markovian dynamic network. 2015, 92 (4): 042801.
|
17 |
KISS I Z, RÖST G, VIZI Z. Physical Review Letters, Generalization of pairwise models to non-Markovian epidemics on networks. 2015, 115 (7): 078701.
|
18 |
SHERBORNE N, MILLER J C, BLYUSS K B, et al. Journal of Mathematical Biology, Mean-field models for non-Markovian epidemics on networks. 2018, 76 (3): 755- 778.
|
19 |
ANDERSON R M, MAY R M. Infectious Diseases of Humans: Dynamics and Control[M]. Oxford University Press, 1992.
|
20 |
VANMIEGHEM P, OMIC J, KOOIJ R. IEEE/ACM Transactions On Networking, Virus spread in networks. 2009, 17 (1): 1- 14.
|
21 |
VANMIEGHEM P. Computing, The n-intertwined SIS epidemic network model. 2011, 93 (2-4): 147- 169.
|
22 |
MCGLADE J M. Advanced Ecological Theory: Principles and Applications[M]. Hoboken: John Wiley & Sons, Ltd, 1999.
|
23 |
KEELING M J. Proceedings of the Royal Society B: Biological Sciences, The effects of local spatial structure on epidemiological invasions. 1999, 266 (1421): 859- 867.
|
24 |
ROBINSON J C, GLENDINNING P A. From Finite to Infinite Dimensional Dynamical Systems[M]. Berlin: Springer Science & Business Media, 2001.
|
25 |
EAMES K T D, KEELING M J. Proceedings of the National Academy of Sciences, Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. 2002, 99 (20): 13330- 13335.
|
26 |
GLEESON J P. Physical Review Letters, High-accuracy approximation of Binary-State dynamics on networks. 2011, 107 (6): 068701.
|
27 |
ZACHARY W. Journal of Anthropological Research, An information flow model for conflict and fission in small groups. 1977, 33 (4): 452- 473.
|