| 1 | PASTOR-SATORRAS R, VESPIGNANI A. Physical Review Letters, Epidemic Spreading in Scale-Free Networks. 2001, 86 (14): 3200- 3203. | 
																													
																						| 2 | PASTOR-SATORRAS R, CASTELLANO C, VAN MIEGHEM P, et al. Reviews of Modern Physics, Epidemic processes in complex networks. 2015, 87 (3): 925. | 
																													
																						| 3 | WANG W, TANG M, STANLEY H E, et al. Reports on Progress in Physics, Unification of theoretical approaches for epidemic spreading on complex networks. 2017, 80 (3): 036603. | 
																													
																						| 4 | BARABÁSI, A L. Nature, The origin of bursts and heavy tails in human dynamics. 2005, 435 (7039): 207. | 
																													
																						| 5 | STOUFFER D B, MALMGREN R D, AMARAL L A N. Nature, Comment on Barabasi. 2005, 435, 207- 211. | 
																													
																						| 6 | VÁZQUEZ A, OLIVEIRA J G, DEZSÖ Z, et al. Physical Review E, Modeling bursts and heavy tails in human dynamics. 2006, 73 (3): 036127. | 
																													
																						| 7 | KENAH E, ROBINS J M. Physical Review E, Second look at the spread of epidemics on networks. 2007, 76 (3): 036113. | 
																													
																						| 8 | VAZQUEZ A, RACZ B, LUKACS A, et al. Physical Review Letters, Impact of non-Poissonian activity patterns on spreading processes. 2007, 98 (15): 158702. | 
																													
																						| 9 | KARRER B, NEWMAN M E J. Physical Review E, Message passing approach for general epidemic models. 2010, 82 (1): 016101. | 
																													
																						| 10 | MIN B, GOH K I, VAZQUEZ A. Physical Review E, Spreading dynamics following bursty human activity patterns. 2015, 83 (3): 036102. | 
																													
																						| 11 | STARNINI M, GLEESON J P, BOGUÑÁ M. Physical Review Letters, Equivalence between non-Markovian and Markovian dynamics in epidemic spreading processes. 2017, 118 (12): 128301. | 
																													
																						| 12 | CATOR E, BOVENKAMP R V D, VAN MIEGHEM P. Physical Review E, Susceptible-infected-susceptible epidemics on networks with general infection and cure times. 2013, 87 (6): 1- 7. | 
																													
																						| 13 | FENG M, CAI S M, TANG M, et al. Nature Communications, Equivalence and its invalidation between non-Markovian and Markovian spreading dynamics on complex networks. 2019, 10 (1): 1- 10. | 
																													
																						| 14 | MIN B, GOH K I, KIM I M. Europhysics Letters, Suppression of epidemic outbreaks with heavy-tailed contact dynamics. 2013, 103 (5): 50002. | 
																													
																						| 15 | VANMIEGHEM P, VANDEBOVENKAMP R. Physical Review Letters, Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks. 2013, 110 (10): 108701. | 
																													
																						| 16 | GEORGIOU N, KISS I Z, SCALAS E. Physical Review E, Solvable non-Markovian dynamic network. 2015, 92 (4): 042801. | 
																													
																						| 17 | KISS I Z, RÖST G, VIZI Z. Physical Review Letters, Generalization of pairwise models to non-Markovian epidemics on networks. 2015, 115 (7): 078701. | 
																													
																						| 18 | SHERBORNE N, MILLER J C, BLYUSS K B, et al. Journal of Mathematical Biology, Mean-field models for non-Markovian epidemics on networks. 2018, 76 (3): 755- 778. | 
																													
																						| 19 | ANDERSON R M, MAY R M. Infectious Diseases of Humans: Dynamics and Control[M]. Oxford University Press, 1992. | 
																													
																						| 20 | VANMIEGHEM P, OMIC J, KOOIJ R. IEEE/ACM Transactions On Networking, Virus spread in networks. 2009, 17 (1): 1- 14. | 
																													
																						| 21 | VANMIEGHEM P. Computing, The n-intertwined SIS epidemic network model. 2011, 93 (2-4): 147- 169. | 
																													
																						| 22 | MCGLADE J M. Advanced Ecological Theory: Principles and Applications[M]. Hoboken: John Wiley & Sons, Ltd, 1999. | 
																													
																						| 23 | KEELING M J. Proceedings of the Royal Society B: Biological Sciences, The effects of local spatial structure on epidemiological invasions. 1999, 266 (1421): 859- 867. | 
																													
																						| 24 | ROBINSON J C, GLENDINNING P A. From Finite to Infinite Dimensional Dynamical Systems[M]. Berlin: Springer Science & Business Media, 2001. | 
																													
																						| 25 | EAMES K T D, KEELING M J. Proceedings of the National Academy of Sciences, Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. 2002, 99 (20): 13330- 13335. | 
																													
																						| 26 | GLEESON J P. Physical Review Letters, High-accuracy approximation of Binary-State dynamics on networks. 2011, 107 (6): 068701. | 
																													
																						| 27 | ZACHARY W. Journal of Anthropological Research, An information flow model for conflict and fission in small groups. 1977, 33 (4): 452- 473. |