物理学与电子学

深度学习在认知无线电中的应用研究综述

  • 刘波 ,
  • 白晓东 ,
  • 张更新 ,
  • 沈俊 ,
  • 谢继东 ,
  • 赵来定 ,
  • 洪涛
展开
  • 1. 南京邮电大学 通信与信息工程学院,南京 210003
    2. 西安空间无线电技术研究所,西安 710000

收稿日期: 2019-11-16

  网络出版日期: 2021-01-28

基金资助

国家自然科学基金(61701260, 91738201)

Review of deep learning in cognitive radio

  • Bo LIU ,
  • Xiaodong BAI ,
  • Gengxin ZHANG ,
  • Jun SHEN ,
  • Jidong XIE ,
  • Laiding ZHAO ,
  • Tao HONG
Expand
  • 1. College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
    2. CAST-Xi’an Institute of Space Radio Technology, Xi’an 710000, China

Received date: 2019-11-16

  Online published: 2021-01-28

摘要

无线通信业务的发展使得频谱资源变得越发紧张, 而现有的频谱利用效率却不高, 这一矛盾很大程度上可归结为频谱的静态分配策略. 认知无线电(Cognitive Radio, CR)技术被广泛认为是解决频谱静态分配问题的可行方案. 深度学习作为机器学习的新兴分支, 近几年在学术界和产业界都取得了许多成果, 成为人工智能的驱动性技术之一. 对深度学习在认知无线电中的应用进行了调研, 简要介绍了认知无线电和深度学习各自的发展, 且着重介绍了深度学习算法在频谱预测、频谱环境感知、信号分析等认知无线电关键技术环节中的应用, 并在最后对此进行了总结和探讨.

本文引用格式

刘波 , 白晓东 , 张更新 , 沈俊 , 谢继东 , 赵来定 , 洪涛 . 深度学习在认知无线电中的应用研究综述[J]. 华东师范大学学报(自然科学版), 2021 , 2021(1) : 36 -52 . DOI: 10.3969/j.issn.1000-5641.201922017

Abstract

The development of wireless communication has made spectrum resources increasingly scarce. Existing spectrum resources, however, are not currently used in an efficient way. This contradiction can usually be attributed to the problem created by static spectrum allocation strategies. Cognitive radio (CR) is widely regarded as a feasible solution to solve the problem of static spectrum allocation. In recent years, deep learning, an emerging field of machine learning, has contributed to a number of notable research and application achievements. It has become one of the driving technologies behind artificial intelligence. In this paper, we investigated the application of deep learning to CR; this includes the development of cognitive radio and deep learning as well as the usage of deep learning models in key technologies for CR (such as spectrum prediction, spectrum environment sensing, signal analysis, etc.). Lastly, we summarize and discuss conclusions from this review.

参考文献

1 武秀广, 宋旭, 任培明. 数字通信世界, 认知无线电关键技术及应用. 2014, (2): 57- 60.
2 TANDRA R, SAHAI A. Fundamental limits on detection in low SNR under noise uncertainty [C]//2005 International Conference on Wireless Networks, Communications and Mobile Computing. IEEE, 2005(1): 464-469. DOI: 10.1109/WIRLES.2005.1549453.
3 MITOLA J, MAGUIRE G Q. Software Radio Technologies: Selected Readings, Cognitive radio: Making software radios more personal. 1999, 6 (4): 413- 418.
4 WU Q H, DING G R, WANG J L, et al. IEEE Transactions on Wireless Communications, Spatial-temporal opportunity detection for spectrum-heterogeneous cognitive radio networks: Two-dimensional sensing. 2013, 12 (2): 516- 526.
5 HAYKIN S. IEEE Journal on Selected Areas in Communications, Cognitive radio: Brain-empowered wireless communications. 2005, 23 (2): 201- 220.
6 郭永明, 李军芳, 李宁. 电信科学, 未来智能无线电将对频谱管理带来深刻影响. 2012, 28 (7): 14- 15.
7 DONG X, LI Y, WEI S Q. Chinese Science Bulletin, Design and implementation of a cognitive engine functional architecture. 2012, 57 (28): 3698- 3704.
8 CLANCY C, HECKER J, STUNTEBECK E, et al. IEEE Wireless Communications, Applications of machine learning to cognitive radio networks. 2007, 14 (4): 47- 52.
9 HINTON G, SALAKHUTDINOV R. Science, Reducing the dimensionality of data with neural networks. 2006, 313 (5786): 504- 508.
10 陈远哲, 匡俊, 刘婷婷, 等. 华东师范大学学报(自然科学版), 共指消解技术综述. 2019, (5): 16- 35.
11 ZHANG M, DIAO M, GUO L M. IEEE Access, Convolutional neural networks for automatic cognitive radio waveform recognition. 2017, (5): 11074- 11082.
12 YASHASHWI K, SETHI A, CHAPORKAR P. IEEE Wireless Communications Letters, A learnable distortion correction module for modulation recognition. 2019, 8 (1): 77- 80.
13 GAO L, ZHANG X, GAO J, et al. IEEE Access, Fusion image based radar signal feature extraction and modulation recognition. 2019, (7): 13135- 13148.
14 WANG Y, LIU M, YANG J, et al. IEEE Transactions on Vehicular Technology, Data-driven deep learning for automatic modulation recognition in cognitive radios. 2019, 68 (4): 4074- 4077.
15 ZHANG Q, XU Z, ZHANG P. Modulation recognition using wavelet-assisted convolutional neural network [C]//International Conference on Advanced Technologies for Communications. IEEE, 2018: 100-104.
16 HIREMATH S M, DESHMUKH S, RAKESH R. Blind identification of radio access techniques based on time-frequency analysis and convolutional neural network [C]//TENCON 2018 ? 2018 IEEE Region 10 Conference. IEEE, 2018: 1163-1167.
17 WU H, LI Y, ZHOU L, et al. Electronics Letters, Convolutional neural network and multi-feature fusion for automatic modulation classification. 2019, 55 (16): 895- 897.
18 GU H, WANG Y, HONG S, et al. IEEE Access, Blind channel identification aided generalized automatic modulation recognition based on deep learning. 2019, (7): 110722- 110729.
19 YANG X. IEEE Access, Fusion methods for CNN-based automatic modulation classification. 2019, (7): 66496- 66504.
20 WANG D, ZHANG M, LI J, et al. Optics Express, Intelligent constellation diagram analyzer using convolutional neural network-based deep learning. 2017, 25 (15): 17150- 17166.
21 O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//International Conference on Engineering Applications of Neural Networks 2016: Engineering Applications of Neural Networks. Cham: Springer, 2016: 213-226..
22 LI R, LI L, YANG S, et al. IEEE Communications Letters, Robust automated VHF modulation recognition based on deep convolutional neural networks. 2018, 22 (5): 946- 949.
23 YONGSHI W, JIE G, HAO L, et al. CNN-based modulation classification in the complicated communication channel [C]//2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). 2017: 512-516.
24 NADEEM F, HOON C, GUONG S, et al. Computers and Electrical Engineering, Elsevier Ltd., Automatic modulation format / bit-rate classification and signal-to-noise ratio estimation using asynchronous delay-tap sampling. 2015, 47, 126- 133.
25 PENG S L, JIANG H Y, WANG H X, et al. Modulation classification using convolutional neural network based deep learning model [C]//2017 26th Wireless and Optical Communication Conference (WOCC). IEEE, 2017. DOI: 10.1109/WOCC.2017.7929000.
26 SADEGHI M, LARSSON E G. IEEE Wireless Communications Letters, Adversarial attacks on deep-learning based radio signal classification. 2019, 8 (1): 213- 216.
27 ZHANG Y, LIU T, ZHANG L B, et al. A deep learning approach for modulation recognition [C]//2018 IEEE 23rd International Conference on Digital Signal Processing (DSP). IEEE, 2018. DOI: 10.1109/ICDSP.2018.8631811.
28 MENDIS G J, WEI J, MADANAYAKE A. Deep learning-based automated modulation classification for cognitive radio [C]//2016 IEEE International Conference on Communication Systems (ICCS). IEEE, 2016. DOI: 10.1109/ICCS.2016.7833571.
29 MENDIS G J, WEI J, MADANAYAKE A. Deep belief network for automated modulation classification in cognitive radio [C]//2017 Cognitive Communications for Aerospace Applications Workshop (CCAA). IEEE, 2017. DOI: 10.1109/CCAAW.2017.8001609.
30 HONG D H, ZHANG Z L, XU X D. Automatic modulation classification using recurrent neural networks [C]//2017 3rd IEEE International Conference on Computer and Communications (ICCC). IEEE, 2017: 695-700. DOI: 10.1109/CompComm.2017.8322633.
31 RAJENDRAN S, MEMBER S, MEERT W, et al. IEEE Transactions on Cognitive Communications and Networking, Deep learning models for wireless signal classification with distributed low-cost spectrum sensors. 2018, 4 (3): 433- 445.
32 WEST N E, O’HEA T. Deep architectures for modulation recognition [C]//2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2017. DOI: 10.1109/DySPAN.2017.7920754.
33 TANG B, TU Y, ZHANG Z, et al. IEEE Access, Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks. 2018, (6): 15713- 15722.
34 LI J, QI L, LIN Y, et al. Research on modulation identification of digital signals based on deep learning [C]//2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT). IEEE, 2016: 402-405.
35 DAI A, ZHANG H, SUN H. Automatic modulation classification using stacked sparse auto-encoders [C]//2016 IEEE 13th International Conference on Signal Processing (ICSP). IEEE, 2016: 248-252.
36 YU L, CHEN J, DING G R, et al. IEEE Access, Spectrum prediction based on taguchi method in deep learning with long short-term memory. 2018, (6): 45923- 45933.
37 HERNáNDEZ J, LóPEZ D, VERA N. Primary user characterization for cognitive radio wireless networks using long short-term memory [J]. International Journal of Distributed Sensor Networks, 2018, 14(11). DOI: 10.1177/1550147718811828.
38 ZUO P L, WANG X, LINGHU W D, et al. Prediction-based spectrum access optimization in cognitive radio networks [C]//2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2018. DOI: 10.1109/PIMRC.2018.8580726.
39 YU L, CHEN J, DING G R. Spectrum prediction via long short term memory [C]//2017 3rd IEEE International Conference on Computer and Communications, ICCC 2017. IEEE, 2018: 643-647.
40 AGARWAL A, DUBEY S, KHAN M A, et al. Learning based primary user activity prediction in cognitive radio networks for efficient dynamic spectrum access [C]//2016 International Conference on Signal Processing and Communications, SPCOM 2016. IEEE, 2016. DOI: 10.1109/SPCOM.2016.7746632.
41 SHAWEL B S, WOLDEGEBREAL D H, POLLIN S. Deep-learning based cooperative spectrum prediction for cognitive networks [C]//2018 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2018: 133-137. DOI: 10.1109/ICTC.2018.8539570.
42 SHAWEL B S, WOLDEGEBREAL D H, POLLIN S. Convolutional LSTM-based long-term spectrum prediction for dynamic spectrum access [C]// 2019 27th European Signal Processing Conference (EUSIPCO). IEEE, 2019. DOI: 10.23919/EUSIPCO.2019.8902956.
43 OMOTERE O, FULLER J, QIAN L J, et al. Spectrum occupancy prediction in coexisting wireless systems using deep learning [C]//2018 IEEE 88th Vehicular Technology Conference (VTC-Fall). IEEE, 2018. DOI: 10.1109/VTCFall.2018.8690575.
44 ROY D, MUKHERJEE T, CHATTERJEE M, et al. Primary user activity prediction in DSA networks using recurrent structures [C]//2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2019. DOI: 10.1109/DySPAN.2019.8935716.
45 YU L X, WANG Q L, GUO Y F, et al. Spectrum availability prediction in cognitive aerospace communications: A deep learning perspective [C]//2017 Cognitive Communications for Aerospace Applications Workshop (CCAA). IEEE, 2017. DOI: 10.1109/CCAAW.2017.8001877.
46 YU L, CHEN J, ZHANG Y, et al. China Communications, Deep spectrum prediction in high frequency communication based on temporal-spectral residual network. 2018, 15 (9): 25- 34.
47 AGARWAL A, GANGOPADHYAY R. Transactions on Emerging Telecommunications Technologies, Predictive spectrum occupancy probability-based spatio-temporal dynamic channel allocation map for future cognitive wireless networks. 2018, 29 (8): e3442.
48 TANG Z L, LI S M. KSII Transactions on Internet and Information Systems, Deep recurrent neural network for multiple time slot frequency spectrum predictions of cognitive radio. 2017, 11 (6): 3029- 3045. DOI: 10.3837/tiis.2017.06.013.
49 DO V Q, KOO I. Applied Sciences, Learning frameworks for cooperative spectrum sensing and energy-efficient data protection in cognitive radio networks. 2018, 8 (5): 722- 745.
50 MERCHANT K, REVAY S, STANTCHEV G, et al. IEEE Journal on Selected Topics in Signal Processing, Deep learning for RF device fingerprinting in cognitive communication networks. 2018, 12 (1): 160- 167.
51 LIU H, ZHU X, FUJII T. Adversarial training for low-complexity convolutional neural networks using in spectrum sensing [C]//2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE, 2019: 478-483. DOI: 10.1109/ICAIIC.2019.8668844.
52 HAN D, SOBABE G C, ZHANG C J, et al. Spectrum sensing for cognitive radio based on convolution neural network [C]//2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2017. DOI: 10.1109/CISP-BMEI.2017.8302117.
53 LEE W, KIM M, CHO D H. IEEE Transactions on Vehicular Technology, Deep cooperative sensing: Cooperative spectrum sensing based on convolutional neural networks. 2019, 68 (3): 3005- 3009.
54 LIU C, WANG J, LIU X M, et al. IEEE Journal on Selected Areas in Communications, Deep CM-CNN for spectrum sensing in cognitive radio. 2019, 37 (10): 2306- 2321.
55 XIE J D, LIU C, LIANG Y C, et al. IEEE Communications Letters, Activity pattern aware spectrum sensing: A CNN-based deep learning approach. 2019, 23 (6): 1025- 1028.
56 CUI Y H, JING X J, SUN S L, et al. Deep learning based primary user classification in cognitive radios [C]//2015 15th International Symposium on Communications and Information Technologies (ISCIT). IEEE, 2015: 165-168. DOI: 10.1109/ISCIT.2015.7458333.
57 SUN X K, GAO L, LUO X D, et al. RBM based cooperative Bayesian compressive spectrum sensing with adaptive threshold [C]//2016 IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2016. DOI: 10.1109/ICCChina.2016.7636844
58 TANG Y J, ZHANG Q Y, LIN W. Artificial neural network based spectrum sensing method for cognitive radio [C]//2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM). IEEE, 2010. DOI: 10.1109/WICOM.2010.5601105.
59 KE D, HUANG Z T, WANG X, et al. IEEE Access, Blind detection techniques for non-cooperative communication signals based on deep learning. 2019, (7): 89218- 89225.
60 LEE W. IEEE Communications Letters, IEEE, Resource allocation for multi-channel underlay cognitive radio network based on deep neural network. 2018, 22 (9): 1942- 1945.
61 DU Y H, ZHANG F, XUE L. Sensors, A kind of joint routing and resource allocation scheme based on prioritized memories-deep Q network for cognitive radio ad hoc networks. 2018, 18 (7): 2119- 2139.
62 WANG S, LIU H, GOMES P H, et al. IEEE Transactions on Cognitive Communications and Networking, Deep reinforcement learning for dynamic multichannel access in wireless networks. 2018, 4 (2): 257- 265.
63 LAWRENCE S, GILES C L, AH CHUNG TSOI, et al. IEEE Transactions on Neural Networks, Face recognition: A convolutional neural-network approach. 1997, 8 (1): 98- 113.
64 LECUN Y, FU JIE HUANG, BOTTOU L. Learning methods for generic object recognition with invariance to pose and lighting [C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, CVPR 2004. IEEE, 2004(2): 97-104.
65 ABDEL-HAMID O, MOHAMED A, JIANG H, et al. Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition [C]//2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2012: 4277-4280. DOI: 10.1109/ICASSP.2012.6288864.
66 ABDEL-HAMID O, MOHAMED A, JIANG H, et al. IEEE/ACM Transactions on Audio, Speech, and Language Processing, Convolutional neural networks for speech recognition. 2014, 22 (10): 1533- 1545.
67 NIU X X, SUEN C Y. Pattern Recognition, A novel hybrid CNN-SVM classifier for recognizing handwritten digits. 2012, 45 (4): 1318- 1325.
68 LAUER F, SUEN C Y, BLOCH G. Pattern Recognition, A trainable feature extractor for handwritten digit recognition. 2007, 40 (6): 1816- 1824.
69 LECUN Y, BOTTOU L, BENGIO Y, et al. Proceedings of the IEEE, Gradient-based learning applied to document recognition. 1998, 86 (11): 2278- 2324.
70 HAUSER S C, HEADLEY W C, MICHAELS A J. Signal detection effects on deep neural networks utilizing raw IQ for modulation classification [C]// MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). IEEE, 2017: 121-127. DOI: 10.1109/MILCOM.2017.8170853.
71 O’SHEA T J, HOYDIS J. IEEE Transactions on Cognitive Communications and Networking, An introduction to deep learning for the physical layer. 2017, 3 (4): 563- 575.
72 SAHAI A, TANDRA R, MISHRA S M, et al. Fundamental design tradeoffs in cognitive radio systems[C]// Proceedings of the 1rst International Workshop on Technology and Policy for Accessing Spectrum. ACM, 2006. DOI: 10.1145/1234388.1234390.
73 郭彩丽, 张天魁, 曾志民, 等. 电信科学, 认知无线电关键技术及应用的研究现状. 2006, (8): 50- 55.
74 曾英, 李志勇, 张春平, 等. 新型协作频谱感知系统检测性能优化策略[J]. 华东师范大学学报(自然科学版), 2016(3): 84-91.
75 JIN S, ZHANG X. Compressive spectrum sensing for MIMO-OFDM based cognitive radio networks [C]//2015 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2015: 2197-2202.
76 JAFAR A, SRINIVASA S. IEEE Communications Magazine, The throughput potential of cognitive radio. 2007, 45 (5): 73- 79.
77 SON K, JUNG B C, CHONG S, et al. Power allocation for OFDM-based cognitive radio systems under outage constraints [C]//2010 IEEE International Conference on Communications. IEEE, 2010. DOI: 10.1109/ICC.2010.5501790.
78 YE H, LI G Y, JUANG B H. IEEE Wireless Communications Letters, Power of deep learning for channel estimation and signal detection in OFDM systems. 2018, 7 (1): 114- 117.
79 GALINDO-SERRANO A, GIUPPONI L. IEEE Transactions on Vehicular Technology, Distributed Q-learning for aggregated interference control in cognitive radio networks. 2010, 59 (4): 1823- 1834.
80 VENKATRAMAN P, HAMDAOUI B, GUIZANI M. IEEE Transactions on Vehicular Technology, Opportunistic bandwidth sharing through reinforcement learning. 2010, 59 (6): 3148- 3153.
81 LUND J. Reinforcement learning based distributed multiagent sensing policy for cognitive radio networks [C]//2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2011: 642-646.
82 WANG Z Y, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning [C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48. JMLR, 2016: 1995-2003.
83 刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1-27.
84 VOEGTLIN T, DOMINEY P F. Neural Networks, Linear recursive distributed representations. 2005, 18 (7): 878- 895.
85 LECUN Y, BENGIO Y, HINTON G. Nature, Deep learning. 2015, 521 (7553): 436- 444.
86 HOCHREITER S, SCHMIDHUBER J. Neural Computation, Long short-term memory. 1997, 9 (8): 1735- 1780.
87 MACKAY D J C. Neural Computation, A practical Bayesian framework for backpropagation networks. 1992, 4 (3): 448- 472.
88 UTSUGI A. Neural Computation, Hyperparameter selection for self-organizing maps. 1997, 9 (3): 623- 635.
89 GRAHAM B M, ADLER A. Physiological Measurement, Objective selection of hyperparameter for EIT. 2006, 27 (5): S65- S79.
90 CHEN Z, GUO N, HU Z, et al. IEEE Transactions on Vehicular Technology, Experimental validation of channel state prediction considering delays in practical cognitive radio. 2011, 60 (4): 1314- 1325.
91 LIN Z J, JIANG X Y, HUANG L F, et al. A energy prediction based spectrum sensing approach for cognitive radio networks [C]//2009 5th International Conference on Wireless Communications, Networking and Mobile Computing. IEEE, 2009. DOI: 10.1109/WICOM.2009.5302514.
92 CHEN Z. Channel state prediction in cognitive radio [C]// Cognitive Radio and Interference Management Technology and Strategy, 2012(15): 273-288. DOI: 10.4018/978-1-4666-2005-6.ch015.
93 WANG L C, WANG C W, CHANG C J. IEEE Transactions on Mobile Computing, Modeling and analysis for spectrum handoffs in cognitive radio networks. 2012, 11 (9): 1499- 1513.
94 DING G R, WANG J L, WU Q H, et al. IEEE Communications Magazine, On the limits of predictability in real-world radio spectrum state dynamics: From entropy theory to 5G spectrum sharing. 2015, 53 (7): 178- 183.
95 XING X, JING T, CHENG W, et al. IEEE Wireless Communications, Spectrum prediction in cognitive radio networks. 2013, 20 (2): 90- 96.
96 ELTOM H, KANDEEPAN S, EVANS R J, et al. EURASIP Journal on Wireless Communications and Networking, Statistical spectrum occupancy prediction for dynamic spectrum access: A classification. 2018, (1): 29.
97 HINTON G E, OSINDERO S, TEH Y W. Neural Computation, A fast learning algorithm for deep belief nets. 2006, 18 (7): 1527- 1554.
文章导航

/