河口海岸学

长江流域水库叶绿素及营养盐变化: 生物过滤器效应

  • 同萌 ,
  • 李茂田 ,
  • 牛淑杰 ,
  • 刘晓强 ,
  • 林沐东 ,
  • 郭慧婷 ,
  • 候立军
展开
  • 1. 华东师范大学 河口海岸学国家重点实验室, 上海 200241
    2. 崇明生态研究院, 上海 202162

收稿日期: 2019-11-19

  网络出版日期: 2021-04-01

基金资助

国家自然科学基金(41671007); 国家重点研发项目(2016YFA0600904, 2016YFE0133700);中央高校基本科研专项资金

Changes in chlorophyll and nutrients in reservoirs of the Changjiang River basin: The “biological filter” effect

  • Meng TONG ,
  • Maotian LI ,
  • Shujie NIU ,
  • Xiaoqiang LIU ,
  • Mudong LIN ,
  • Huiting GUO ,
  • Lijun HOU
Expand
  • 1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
    2. Institute of Eco-Chongming, Shanghai 202162, China

Received date: 2019-11-19

  Online published: 2021-04-01

摘要

选取对上游来水滞留时间不同的4个典型水库, 利用藻类和营养盐调查资料, 分析水库的“生物过滤器”效应. 发现: ① 垂向上各水库Chl.a浓度均出现次表层最大, 然后向下逐渐减少的趋势, 导致营养盐浓度形成“上层小下层大”的生物滞留特征, 4个水库的DIN(NO2-N、NH4-N、NO3-N)、DIP(PO4-P)和DSi(SiO3-Si)垂向滞留量平均值分别为下层浓度的6.29%、14.92%和8.60%. ② 沿程上各水库Chl.a浓度和藻类生物量从上游向下游总体呈减小趋势, 导致营养盐浓度形成“上游大下游小”的生物滞留特征, 4个水库DIN、DIP和DSi沿程滞留量平均值分别为上游浓度的26.53%、39.89%和31.70%. ③ 4个水库DIN、DIP和DSi综合滞留量的平均值分别为原浓度的32.82%、54.80%和40.30%. ④ 随水库滞留时间增加, DIP浓度逐渐减少直至小于0.1 μmol/L, 以致磷成为藻类生长的绝对限制条件.

本文引用格式

同萌 , 李茂田 , 牛淑杰 , 刘晓强 , 林沐东 , 郭慧婷 , 候立军 . 长江流域水库叶绿素及营养盐变化: 生物过滤器效应[J]. 华东师范大学学报(自然科学版), 2021 , 2021(2) : 63 -72 . DOI: 10.3969/j.issn.1000-5641.2021.02.007

Abstract

The biological filtering effect of reservoirs has become an area of focus for environmental science. We conducted an in situ survey, with different upstream retention times, of chlorophyll-a (Chl.a) and nutrients at the Zhexi, Zhelin, Hualiangting, and Yahekou reservoirs. We found that: ① In the vertical direction, Chl.a in each reservoir had the largest subsurface layer and generally decreased downward, resulting in upper nutrients assimilated by algae and an average vertical retention rate of DIN, DIP, and DSi of the reservoirs at 6.29%, 14.92%, and 8.60%, respectively. ② The concentration of Chl.a and the biomass of phytoplankton generally decreased from upstream to downstream, resulting in lots of nutrients assimilated by algae upstream, and the average horizontal retention rate of DIN, DIP, and DSi of the reservoirs at 26.53%, 39.89%, and 31.70%, respectively. ③ The total average retention rate of DIN, DIP, and DSi of the four reservoirs were 32.82%, 54.80%, and 40.30%, respectively. ④ The concentration of DIP decreased gradually with increases in the reservoir’s retention time; in fact, the concentration of DIP even decreased to 0.1 μmol/L, i.e. the growth of phytoplankton was fully limited by DIP.

参考文献

1 LEHNER B, LIERMANN C R, REVENGA C, et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment, 2011, 9 (9): 494- 502.
2 贾金生, 袁玉兰, 郑璀莹, 等. 中国水库大坝统计和技术进展及关注的问题简论. 水力发电, 2010, 36 (1): 6- 10.
3 李茂田, 孙千里, 王红, 等. 长江流域水库过滤器效应对入海溶解硅通量的影响. 湖泊科学, 2014, 26 (4): 505- 514.
4 GILING D, MAC NALLY R, THOMPSON R. How might cross-system subsidies in riverine networks be affected by altered flow variability?. Ecosystems, 2015, 18 (7): 1151- 1164.
5 PRINGLE C M. Hydrologic connectivity and the management of biological reserves: A global perspective. Ecological Applications, 2001, 11 (4): 981- 998.
6 冉祥滨, 于志刚, 姚庆祯, 等. 水库对河流营养盐滞留效应研究进展. 湖泊科学, 2009, 21 (5): 614- 622.
7 COLEMAN J M, BRAUD H D. Wetland loss in world deltas. Journal of Coastal Research, 2008, 24 (1A): 1- 14.
8 TESSLER Z D, VOROSMARTY C J, GROSSBERG M, et al. Profiling risk and sustainability in coastal deltas of the world. Science, 2015, 349 (6248): 638- 643.
9 HUMBORG C, ITTEKKOT V, COCIASU A, et al. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature, 1997, 386 (6623): 385- 388.
10 LI M T, XU K Q, WATANABE M, et al. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuarine Coastal & Shelf Science, 2007, 71 (1): 3- 12.
11 VOLLENWEIDER R A. M?glichkeiten und Grenzen elementarer Modelle der Stoffbilanz von Seen. Arch Hydrobiol, 1969, 66 (1): 1- 36.
12 DILLON P J, RIGLER F H. A test of a simple nutrient budget model predicting the phosphorus concentration in lake water. Journal of the Fisheries Board of Canada, 1974, 31 (11): 1771- 1778.
13 KAWARA O, YURA E, FUJⅡ S, et al. A study on the role of hydraulic retention time in eutrophication of the Asahi River Dam reservoir. Water Science and Technology, 1998, 37 (2): 245- 252.
14 冉祥滨, 于志刚, 臧家业, 等. 地表过程与人类活动对硅产出影响的研究进展. 地球科学进展, 2013, (5): 65- 75.
15 王耀耀, 吕林鹏, 纪道斌, 等. 向家坝水库营养盐时空分布特征及滞留效应. 环境科学, 2019, (8): 3530- 3538.
16 RAN X B, YU Z G, CHEN H T, et al. Silicon and sediment transport of the Changjiang River (Yangtze River): Could the Three Gorges Reservoir be a filter?. Environmental Earth Sciences, 2013, 70 (4): 1881- 1893.
17 胡春华, 楼倩, 丁文军, 等. 鄱阳湖氮、磷营养盐的滞留效应研究. 环境污染与防治, 2012, (9): 16- 19.
18 WANG F, YU Y, LIU C, et al. Dissolved silicate retention and transport in cascade reservoirs in Karst area, Southwest China. Science of the Total Environment, 2010, 408 (7): 1667- 1675.
19 益阳市志编纂委员会. 益阳市志 [M]. 北京: 中国文史出版社, 1990: 1-260.
20 熊未喜. 武宁县志 [M]. 南昌: 江西人民出版社, 2009: 111-255.
21 陈文传. 太湖县志 [M]. 合肥: 黄山书社, 2007: 49-384
22 孙爱芳. 南召县志 [M]. 北京: 方志出版社, 2007: 79-243.
23 陈伟民. 湖泊生态系统观测方法 [M]. 北京: 中国环境科学出版社, 2005.
24 国家环境保护总局. 水和废水监测分析方法 [M]. 4版. 北京: 中国环境科学出版社, 2002.
25 胡鸿钧, 魏印心. 中国淡水藻类——系统、分类及生态 [M]. 北京: 科学出版社, 2006.
26 孙军, 刘东艳. 浮游植物生物量研究: Ⅰ. 浮游植物生物量细胞体积转化法. 海洋学报, 1999, 21 (2): 75- 85.
27 武丹, 王海英, 张震. 天津于桥水库夏季浮游生物调查及群落结构变化. 湖泊科学, 2013, (5): 121- 128.
28 马孟枭, 张玉超, 钱新, 等. 巢湖水体组分垂向分布特征及其对水下光场的影响. 环境科学, 2014, 5 (5): 1698- 1707.
29 宫响, 史洁, 高会旺. 海洋次表层叶绿素最大值的特征因子及其影响因素. 地球科学进展, 2012, 27 (5): 539- 548.
30 GONG G C, SHIAH F K, LIU K K, et al. Spatial and temporal variation of chlorophyll-a, primary productivity and chemical hydrography in the southern East China Sea. Continental Shelf Research, 2000, 20 (4): 411- 436.
31 邹曦, 潘晓洁, 郑志伟, 等. 三峡水库小江回水区叶绿素a与环境因子的时空变化. 水生态学杂志, 2017, 38 (4): 48- 56.
32 郭劲松, 李伟, 李哲, 等. 三峡水库小江回水区春季初级生产力. 湖泊科学, 2011, 23 (4): 591- 596.
33 朱俊, 刘丛强, 王雨春, 等. 乌江渡水库中溶解性硅的时空分布特征. 水科学进展, 2006, 17 (3): 330- 333.
34 杨鹍, 张茂林. 水质垂直剖面自动监测在水库分层取水中的应用——以湖北赤壁市陆水水库为例. 人民长江, 2015, (4): 98- 101.
35 张曼. 不同生长条件对乌江适生藻类生长、光合作用和叶绿素荧光特性的影响 [D]. 重庆: 西南大学, 2007.
36 朱永青, 卢士强, 吴建强. 金泽生态水源湖水库净化效果中试试验研究. 环境科技, 2018, 31 (3): 40- 45.
37 JUSTIC D, RABALAIS N N, TURNER R E, et al. Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuarine Coastal and Shelf Science, 1995, 40 (3): 339- 356.
38 REDFIELD A C. The biological control of chemical factors in the environment. Science Progress, 1960, 11 (11): 150- 170.
39 NELSON D, BRZEZINSKI M. Kinetics of silicic acid uptake by natural diatom assemblages in two Gulf Stream warm-core rings. Marine Ecology Progress, 1990, 62 (3): 283- 292.
文章导航

/