数学

确定有限级数解的阶数上界的一种n阶展开方法

  • 宋宸苇 ,
  • 柳银萍
展开
  • 1. 华东师范大学 计算机科学与技术学院, 上海 200062
    2. 华东师范大学 数学科学学院, 上海 200241

收稿日期: 2020-03-12

  网络出版日期: 2021-05-26

基金资助

国家自然科学基金 (11871328); 上海市科委重点项目 (18511103105); 上海市自然科学基金 (19ZR1414000)

An n-order expansion method for determining the upper bound of the order of finite series solutions

  • Chenwei SONG ,
  • Yinping LIU
Expand
  • 1. School of Computer Science and Technology, East China Normal University, Shanghai 200062, China
    2. School of Mathematical Sciences, East China Normal University, Shanghai 200241, China

Received date: 2020-03-12

  Online published: 2021-05-26

摘要

构造非线性演化方程有限级数解的直接代数方法都是基于齐次平衡原则发展起来的, 如双曲正切方法、Jacobi椭圆函数法、Painlevé截断展开法、CRE方法等. 这些方法中所求解的阶数都是由齐次平衡原则确定的. 本文进一步拓展了齐次平衡原则, 考虑了更多的平衡可能性, 提出了一种n阶展开方法来确定有限级数解可能的更高阶数. 通过将该方法应用到双曲正切方法中, 对所考虑的非线性演化方程确实获得了一些新的更高的阶数和新的解.

本文引用格式

宋宸苇 , 柳银萍 . 确定有限级数解的阶数上界的一种n阶展开方法[J]. 华东师范大学学报(自然科学版), 2021 , 2021(3) : 56 -64 . DOI: 10.3969/j.issn.1000-5641.2021.03.007

Abstract

A number of algebraic methods used for constructing exact finite series solutions of nonlinear evolution equations are based on the homogeneous balance principle, such as the tanh function method, the Jacobi elliptic function method, the Painlevé truncated expansion method, the CRE method, etc. In each of these methods, the order of required solutions is determined by the homogeneous balance principle. In this paper, the homogeneous balance principle is further extended by considering additional balance possibilities. An n-order expansion method is proposed to determine possible new orders of required solutions. By applying the proposed method to several examples, we show that higher orders and new solutions can be obtained.

参考文献

1 1993, 26 (21): 6027- 6031.
2 李志斌. 非线性数学物理方程的行波解(I) [M]. 北京: 科学出版社, 2007.
3 MANAFIAN J, LAKESTANI M. Application of tan(?/2)-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity . Optik, 2016, 127 (4): 2040- 2054.
4 HOSSEINI K, BEKIR A, ANSARI R. New exact solutions of the conformable time-fractional Cahn-Allen and Cahn-Hilliard equations using the modified Kudryashov method. Optik, 2017, 132, 203- 209.
5 BISWAS A, SONMEZOGLU A, EKICI M, et al. Optical soliton perturbation with fractional temporal evolution by extended $ G'/G $ -expansion method . Optik, 2018, 161, 301- 320.
6 FOROUTAN M, MANAFIAN J, RANJBARAN A. Solitons in optical metamaterials with anti-cubic law of nonlinearity by generalized $ G'/G $ -expansion method . Optik, 2018, 162, 86- 94.
7 BISWAS A, EKICI M, SONMEZOGLU A, et al. Highly dispersive optical solitons in absence of self-phase modulation by Jacobi’s elliptic function expansion. Optik, 2019, 189, 109- 120.
8 FAN E. Extended tanh-function method and its applications to nonlinear equations. Physics Letters A, 2000, 277 (4/5): 212- 218.
9 LI Z B, LIU Y P. RATH: A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations. Computer Physics Communications, 2002, 148 (2): 256- 266.
10 NI W G, DAI C Q. Note on same result of different ans?tz based on extended tanh-function method for nonlinear models. Applied Mathematics and Computation, 2015, 270, 434- 440.
11 ZAHRAN E H, KHATER M M. Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Applied Mathematical Modelling, 2016, 40 (3): 1769- 1775.
12 EL-SHIEKH R M, GABALLAH M. Solitary wave solutions for the variable-coefficient coupled nonlinear Schr?dinger equations and Davey-Stewartson system using modified sine-Gordon equation method. Journal of Ocean Engineering and Science, 2020, 5 (2): 180- 185.
13 QI F H, HUANG Y H, WANG P. Solitary-wave and new exact solutions for an extended (3+1)-dimensional Jimbo-Miwa-like equation. Applied Mathematics Letters, 2020, 100, 106004.
14 王明亮, 李志斌, 周宇斌. 齐次平衡原则及其应用. 兰州大学学报(自然科学版), 1999, (3): 8- 16.
15 NGUYEN L T K. Modified homogeneous balance method: Applications and new solutions. Chaos, Solitons & Fractals, 2015, 73, 148- 155.
16 ABDELSALAM U. Traveling wave solutions for shallow water equations. Journal of Ocean Engineering and Science, 2017, 2 (1): 28- 33.
17 ALI A, SEADAWY A R, LU D C. New solitary wave solutions of some nonlinear models and their applications. Advances in Difference Equations, 2018, 2018 (1): 232.
18 LU D, SEADAWY A R, ALI A. Applications of exact traveling wave solutions of modified Liouville and the symmetric regularized long wave equations via two new techniques. Results in Physics, 2018, 9, 1403- 1410.
19 ZHENG G, WANG H. Finite-time estimation for linear time-delay systems via homogeneous method. International Journal of Control, 2019, 92 (6): 1252- 1263.
20 MIAH M M, ALI H S, AKBAR M A, et al. New applications of the two variable $ (G'/G, 1/G) $ -expansion method for closed form traveling wave solutions of integro-differential equations . Journal of Ocean Engineering and Science, 2019, 4 (2): 132- 143.
21 AL AMR M O, EL GANAINI S. New exact traveling wave solutions of the (4+1)-dimensional Fokas equation. Computers & Mathematics with Applications, 2017, 74 (6): 1274- 1287.
22 BENNEY D. A general theory for interactions between short and long waves. Studies in Applied Mathematics, 1977, 56 (1): 81- 94.
23 KICHENASSAMY S, OLVER P J. Existence and nonexistence of solitary wave solutions to higher-order model evolution equations. SIAM Journal on Mathematical Analysis, 1992, 23 (5): 1141- 1166.
24 KUNIN I A. Elastic Media with Microstructure I: One-dimensional Models [M]. [S.l.]: Springer Science & Business Media, 2012.
文章导航

/